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Abstract. Let Q be a positive de�nite n × n matrix and ζ(s;Q) be the
Epstein zeta-function associated with Q. In the present paper, we prove
that, for arbitrary given complex number c, the equation ζ(s;Q) = c has at
least CT , for some positive constant C, solutions in the region Re s > n−1

2
when n > 4 is even and Q satis�es certain conditions. As a corollary, we
show that ζ(s; I2k), where N ∋ k ̸= 1, 2, 4 and In is the n-dimensional unit
matrix, have complex zeros in the strip k − 1

2 < Re s < k.

Key words and phrases: hybrid universality, zeros and c-values of Epstein
zeta-functions.

2010 Mathematics Subject Classi�cation: 10C15, 11M41.

1. Introduction

1.1. Epstein zeta-functions

In the beginning of the twentieth century, Epstein [12] introduced zeta-
functions associated with quadratic forms. As mentioned in [32, Introduc-
tion], these zeta-functions are interesting analytical objects which play an
important role in algebraic number theory, the theory of modular forms (see,
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for example, Siegel [30]), and, recently, in chemistry and physics (see, for
instance, Buhler and Crandall [6], Elizalde and Romeo [10], and Elizalde
[11]).

Let Q be a positive de�nite n × n matrix, and write Q[x] := xtQx for
x ∈ Zn. Then the Epstein zeta-function associated with Q is given by

ζ(s;Q) :=
∑

x∈Zn\{0}

Q[x]−s, Re s >
n

2
.

As some examples of Epstein zeta-functions, we have the following (see
also Section 3.1). Denote by In the n-dimensional unit matrix. Let ζ(s) be
the Riemann zeta-function ζ(s) :=

∑∞
n=1 n

−s, where Re s > 1, L(s, χ) be the
Dirichlet L-function L(s, χ) :=

∑∞
n=1 χ(n)n

−s, where Re s > 1, and χ−4 be
the non-principal Dirichlet character of mod4. Then we have

ζ(s; I1) = 2ζ(2s), ζ(s; I2) = 4ζ(s)L(s, χ−4),

ζ(s; I4) = 8(1− 22−2s)ζ(s)ζ(s− 1).

For any positive de�nite n×nmatrix Q, the Epstein zeta-function ζ(s;Q)
is continued analytically elsewhere, except for a simple pole at s = n

2 . More-
over, the Epstein zeta-function satis�es a functional equation of the Riemann-
type

π−sΓ(s)ζ(s;Q) = (detQ)−1/2πs−n/2Γ

(
n

2
− s

)
ζ

(
n

2
− s;Q−1

)
. (1)

This functional equation implies that ζ(s;Q) vanishes at the so-called trivial
zeros s = −m, m ∈ N. All other zeros are said to be nontrivial and are
denoted by ρ = β + iγ.

If the Riemann hypothesis, i.e., all nontrivial zeros of ζ(s) lie on the line
σ = 1

2 , is true, then all nontrivial zeros of the function ζ(s; I1) lie on the
critical line σ = 1

4 . Additionally, if the analogue of the Riemann hypothesis
for the Dirichlet L-function L(s, χ−4) holds, then all nontrivial zeros of the
function ζ(s; I2) lie on the critical line σ = 1

2 or σ = 1
4 . The function ζ(s; I4)

is expected to have most of its zeros on the lines σ = 1
2 and σ = 3

2 , but
in�nitely many zeros lie on σ = 1.

The zero-distribution of these Epstein zeta-functions with n = 2 was
�rstly investigated by Potter and Titchmarsh [27]. They proved that in-
�nitely many zeros lie on the critical line σ = 1

2 . Bateman and Grosswald
[2] showed that Epstein zeta-functions attached to positive de�nite quadratic
forms ax2+bxy+cy2 with discriminant∆ := b2−4ac have a real zero between
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1
2 and 1 if k := (2a)−1

√
∆ > 7.00556. Note that this result was announced

by Chowla and Selberg [7] but they have never published a proof. Deuring
[9] and Stark [31] showed that all zeros of these Epstein zeta-functions in the
rectangle −1 < Re s < 2, |Im s| 6 2k lie on the critical line σ = 1

2 and are
simple with the exception of two real zeros between 0 and 1, provided k is
su�ciently large.

It is known that if the binary quadratic form Q[x] has class number
one, then the Epstein zeta-function is up to a constant factor equal to the
Dedekind zeta-function of the related quadratic number �eld; in this case,
ζ(s;Q) has an Euler product and is expected to satisfy the analogue of the
Riemann hypothesis. If the class number is larger than one, Davenport and
Heilbronn [8] proved an in�nitude of zeros in the half-plane of absolute con-
vergence σ > 1. Hejhal [16] and Bombieri and Hejhal [4] proved that almost
all zeros of Epstein zeta-functions associated with binary quadratic forms lie
on the critical line subject to the truth of the generalized Riemann hypoth-
esis in combination with an unproved but widely believed conjecture on the
spacing of zeros of L-functions for ideal class characters. Recently, Bombieri
and Mueller [5] obtained upper and lower bounds for the rate of approach
of zeros to the boundary of the zero-free half-plane for certain Epstein zeta
functions, associated to positive de�nite binary quadratic forms with class
number 2. Moreover, Lee [22] showed an asymptotic formula for the number
of zeros in any strip 1

2 < σ1 < σ2 < 1.

It turns out that the zero-distribution of Epstein zeta-functions attached
to quadratic forms in more than two variables has a rather di�erent nature.
For Epstein zeta-functions attached to certain quadratic forms of rank n = 4,
Fujii [13] investigated the real zeros of Epstein zeta functions with Q[x] =
x21 + x22 + d(x23 + x34). Terras [35] gave examples which have real zeros of
the critical line σ = n

4 for arbitrary n. Steuding [32] proved that the mean
value of the real parts of the nontrivial zeros of the Epstein zeta-function
is equal to the abscissa of the critical line σ = n

4 . Let N(T ;Q) count the
number of nontrivial zeros ρ = β + iγ of ζ(s;Q) with |γ| 6 T . Denote by
m(Q) the minimum of the values of the quadratic form Q[x] for x ∈ Zn \{0}
and, �nally, let N(Q) count the number of x for which Q[x] = m(Q). Then
Steuding showed the following result (see [32], Theorem 1).

Theorem A. As T tends to in�nity,

N(T ;Q) =
2T

π
log

T

πe
√

m(Q)m(Q−1)
+ O(log T ),
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∑
|γ|<T

(
β − n

4

)
= − T

4π
log

(
Σ(Q)

)
+O(log T ),

where Σ(Q) is de�ned by

Σ(Q) := (detQ)2
(

N(Q)

N(Q−1)

)4(m(Q−1)

m(Q)

)n
.

The �rst asymptotic formula is a Riemann-von Mangoldt formula for the
Epstein zeta-function. It should be noted that if Σ(Q) is di�erent from 1,
ζ(s;Q) has in�nitely many zeros o� the critical line σ = n

4 (see Remark 3.1).
The combination of both asymptotic formulae of the above theorem leads to

1

N(T ;Q)

∑
|γ|<T

β =
n

4
+ O

(
1

log T

)
,

and thus the mean-value of the real parts of the nontrivial zeros of the Epstein
zeta-function ζ(s;Q) exists and is equal to n

4 .

It turns out that the distribution of the c-values, i.e., the roots of the
equation ζ(s;Q) = c, behaves similarly to the zero-distribution showed in
Theorem A. Namely, Steuding (see [33], Theorem 1) proved the analogue of
a Riemann-von Mangoldt formula for the counting function Nc(σ,∞, T ;Q)
and asymmetry in the c-values distribution, where Nc(σ,∞, T ;Q) counts the
number of c-values ρc = βc+iγc with σ < βc <∞ and 0 < γc < T . Moreover,
one can conclude from Theorem 2 in [33] the following fact.

Proposition 1.1. Let c be a complex number and σ1 > max
{
1
4 ,

n−1
2

}
�xed.

Then, for su�ciently large T , we have∑
βc>σ1
0<γc<T

(βc − σ1) ≪ T.

In particular,

Nc(σ1,∞, T ;Q) ≪ T as T → ∞.

It should be noted that Theorem 2 from [33] gives the same estimation
but for c-values with the imaginary part satisfying T < γc < 2T . However,
the �rst part of the proposition can be easily showed by applying this theorem
with 2−nT instead of T and summing up all resulting estimations.
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The second part of Proposition 1.1 can be easily veri�ed as well, since∑
βc>σ1
0<γc<T

1 6 1

σ1 − σ′1

∑
βc>σ1
0<γc<T

(βc − σ′1) 6
1

σ1 − σ′1

∑
βc>σ′

1
0<γc<T

(βc − σ′1) ≪ T,

where σ1 > σ′1 > max
{
1
4 ,

n−1
2 }.

Our main propose of this paper is to give a lower bound for the counting
function Nc(σ1, σ2, T ;Q), provided that n−1

2 < σ1 < σ2 <
n
2 and the order

n of Q is even and greater that or equal to 4. For a precise formulation,
we refer to Theorem 3.1. As a corollary, we obtain new examples of Epstein
zeta-functions which have complex zeros o� the critical line Re s = n

4 (see
Remark 3.1).

2. Auxiliary results

2.1. Hybrid universality

In 1975, Voronin [36] showed the universality theorem for the Riemann zeta-
function ζ(s). To state it, let D :=

{
s ∈ C : 1

2 < Re s < 1
}
and K ⊂ D be

a compact set with connected complement. Denote by µ(A) the Lebesgue
measure of the set A, and, for T > 0, write νT {. . .} := T−1µ{τ ∈ [0, T ] : . . .}
where the dots stands for a condition satis�ed by τ . Let H(K) denote the
space of non-vanishing continuous functions on K, which are analytic in the
interior, equipped with the supremum norm ∥ · ∥K . The modern version of
the universality for ζ(s) is as follows.

Theorem B. For any f ∈ H(K) and any ε > 0, we have

lim inf
T→∞

νT
{
∥ζ(s+ iτ)− f(s)∥K < ε

}
> 0.

Roughly speaking, this theorem implies that any non-vanishing ana-
lytic function can be uniformly approximated by the Riemann zeta-function.
Subsequently many mathematicians have considered generalizations of uni-
versality (see, for instance, [34]). For example, Voronin also proved the
joint universality theorem, which implies that a collection of Dirichlet L-
functions with non-equivalent characters uniformly and simultaneously ap-
proximates non-vanishing analytic functions. Note that two characters are
non-equivalent if they are not induced by the same character. In slightly
di�erent form this was also established by Gonek [14] and Bagchi [1], in-
dependently (both of these papers are unpublished Doctoral Theses). Let
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K1, . . . ,Km ⊂ D be compact sets with connected complement. The modern
version of the joint universality for Dirichlet L-functions L(s, χ) states:

Theorem C. Let χ1mod q1, . . ., χmmod qm be pairwise non-equivalent

Dirichlet characters, and fl(s) be a non-vanishing continuous function on Kl

which is analytic in the interior of Kl for 1 6 l 6 m. Then, for every ε > 0,
we have

lim inf
T→∞

νT

{
max
16l6m

∥L(s+ iτ, χl)− fl(s)∥Kl
< ε

}
> 0.

In the present paper, we use so-called hybrid universality, which is a
connection between the Voronin theorem and the classical Kronecker ap-
proximation theorem. The authors used this property to obtain universality
theorems for certain combinations of L-functions with general Dirichlet series
as coe�cients in [23] and [24]. Moreover, the authors gave a lower and upper
bound for the number of zeros of certain polynomials of L-functions in [25].
We adopt the approach from [25] to prove the main theorem on c-values of
Epstein zeta-functions (see Theorem 3.1 below).

We denote the distance to the nearest integer by ∥ · ∥. The precise de�-
nition of the hybrid universality is as follows.

Definition 2.1. Hybrid joint universality for the set of functions

{Ll(s)}16l6m is the following property: Let Kl ⊂ D, fl ∈ H(Kl) and

{αj}16j6k be real numbers linearly independent over Q. Then, for any ε > 0
and any real numbers {θj}16j6k, we have

lim inf
T→∞

νT

{
max
16l6m

∥Ll(s+ iτ)− fl(s)∥Kl
< ε, max

16j6k
∥ταj − θj∥ < ε

}
> 0. (2)

The �rst result on hybrid universality was proved in weaker form by
Gonek [14] and slightly improved using di�erent method by Kaczorowski and
Kulas [19]. They showed that Dirichlet L-functions satisfy the inequality in
above de�nition for αn = log pn, where pn denotes the nth prime number.
The second author [26] proved the hybrid universality in the most general
form for an axiomatically de�ned wide class of L-functions having Euler
product which contains, for instance, Dirichlet L-functions.

It is worth to note that the Diophantine inequality appeared in (2) plays
a crucial role in estimating the number of c-values from below. Using this
restriction on t, one can prove almost periodicity of an absolutely convergent
general Dirichlet series de�ned by

∞∑
n=1

ane
−λns, where an ∈ C, λn ∈ R \ {0}.
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More precisely, the following lemma based on the approach of Bohr [3], or
Sander and Steuding [28, Section 2], holds.

Lemma 2.1. Let Pk(s) =
∑∞

n=1 akne
−λkns be a general Dirichlet series.

Then, for every ε > 0 and every compact set K lying in the half-plane

of absolute convergence, there exist δ > 0, N ∈ Z+ and a �nite set J ∈
{1, 2, . . . , N} × Z+ such that the numbers λjm, (j,m) ∈ J , are linearly inde-

pendent over Q and, moreover, if

max
(k,n)∈J

∥∥∥∥τλkn2πN

∥∥∥∥ < δ,

then it holds that

max
16k6n

∥∥Pk(s+ iτ)− Pk(s)
∥∥
K
< ε.

Proof. Let us take ε > 0, and a compact set K is �xed. Then there exists
a positive integer M such that

max
16k6n

max
s∈K

∑
n>M

|akn|e−λknRe s <
ε

3
.

Now let us take the set J of indices such that {λjm : (j,m) ∈ J} is the
basis of a vector space over Q generated by all numbers λkn with n 6 M .
Moreover, let N be a positive integer such that all these numbers can be
expressed as a linear combination of elements

λjm

N , (j,m) ∈ J , with integer
coe�cients. Then, for s ∈ K and 1 6 k 6 n, we have

|Pk(s+iτ)− Pk(s)| 6
∑
n6M

|akn|
∣∣∣(e−λkn(s+iτ) − e−λkns)

∣∣∣
+2

∑
n>M

|akn| e−λknRe s

≪ max
n6M

∣∣∣e−iτλkn − 1
∣∣∣+ 2ε

3
≪ max

(j,m)∈J

∥∥∥∥τλjmN
∥∥∥∥+

2ε

3
.

Finally, taking suitable δ > 0 completes the proof.
Thus, since hybrid universality combines Diophantine approximations

and universality, one can use this property to show that any linear combina-
tion of hybrid universal L-functions with an absolutely convergent Dirichlet
series as coe�cients approximates (in the sense of Voronin's theorem) an an-
alytic function having at least one c-values in certain disk. More details will
be given in Section 3.2. Then the classical Rouché theorem gives the lower
bound for the number of c-values for such a linear combination.
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2.2. Epstein zeta-functions and L-functions

It is well known that if ∆ < 0 is a fundamental discriminant, then equiva-
lence classes of binary quadratic forms of discriminant ∆ are in one-to-one
correspondence with ideal classes of the �eld Q(

√
∆). The number of repre-

sentations of a number k by a quadratic form is the number of integer ideals
of norm k in the corresponding ideal class, times the number w of roots of
unity in Q(

√
∆). Let χ′

1, . . . , χ
′
m be characters of the class �eld Q(

√
∆) and

Q∆[x] be a quadratic form with integer coe�cients whose discriminant is
equal to the discriminant of Q(

√
∆). Then it follows that

ζ(s;Q∆) =
m∑
k=1

αkL(s, χ
′
k),

where αk ∈ C, χ′
k ̸= χ′

j and χ
′
k ̸= χ′

j for k ̸= j. Note that the number m in
the equation above is greater than 1 under the condition ∆ < −1 (see, for
example, [20, p. 283]). Similarly to Theorem 7.4.3 form [20], we obtain the
following theorem by the equation above and joint universality for Dirichlet
L-functions (see Theorem C).

Theorem D. Suppose that the class number of the �eld Q(
√
∆), where ∆ is

a negative integer, is greater than 1. Then, for any 1
2 < σ1 < σ2 < 1 and for

T su�ciently large, the region σ1 < σ < σ2, 0 < t < T contains at least CT
c-values of ζ(s;Q∆), where C = C(σ1, σ2,Q∆) > 0 does not depend on T ,
and c is an arbitrary given complex number.

Hereafter, assume that Q[x] ∈ Z for any x ∈ Zn \ {0}. For k ∈ Z>0, we
de�ne rQ(k) by the number of x ∈ Zn which satis�es Q[x] = k. Then the
Epstein zeta-function ζ(s;Q) is also expressed by

ζ(s;Q) =

∞∑
k=1

rQ(k)

ks
, Re s >

n

2
.

It is well-known (see, for example, [15]) that the corresponding theta series

θ(z;Q) :=

∞∑
k=0

rQ(k)e
2πikz

becomes a modular form of weight n
2 , which decomposes into the summation

of an Eisenstein series and a cusp form. More precisely, we have

θ(z;Q) = EQ(z) + SQ(z),
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where EQ(z) :=
∑∞

k=0 eQ(k)e
2πikz is an Eisenstein series and SQ(z) :=

∑∞
k=1

sQ(k)e
2πikz is a cusp form. Moreover, it is known that the coe�cient sQ(k)

is evaluated by

sQ(k) ≪

{
kn/4−1/2+ε if n is even,

kn/4−1/4+ε if n is odd.
(3)

Therefore, the Epstein zeta-function ζ(s;Q) is expressed by

ζ(s;Q) = ÊQ(s) + ŜQ(s), (4)

where ÊQ(s) and ŜQ(s) are de�ned by

ÊQ(s) :=

∞∑
k=1

eQ(k)

ks
, ŜQ(s) :=

∞∑
k=1

sQ(k)

ks
, Re s >

n

2
.

Hence, ζ(s;Q) is decomposed into the summation of the L-function associ-
ated to the Eisenstein series and the L-function associated to the cusp form.

Now we suppose that n is even and n > 4. Then the Eisenstein series
EQ(z) is a modular form of weight n

2 and level N , where N is a positive
integer such that NA−1 becomes an integral matrix for A = 2Q (see, for
example, [18, p. 185]). In Theorem 44 from [17], Hecke showed the following.

Theorem E. Let n be even and n > 4. Then the series ÊQ(s) is expressed by

some linear combination of the form (t1t2)
−sL(s, χ1)L

(
s− n

2 +1, χ2

)
, where

t1, t2 are positive divisors of level N and χ1, χ2 are Dirichlet characters

modulo N
t1
, N

t2
, respectively.

3. Main result

3.1. Main Theorem

Before we formulate the main result of this paper, we shall express a given
Epstein zeta-function as a linear combination of Dirichlet L-functions. Recall
that a Dirichlet polynomial is a �nite Dirichlet series

∑m
n=1 ann

−s with com-
plex coe�cients an. Now let n be even and n > 4. It should be noted that
the series expression of ŜQ(s) converges absolutely in the region Re s > n−1

2
because of (3). Therefore, by (4) and Theorem E, we have

ζ(s;Q) =

L∑
l=1

J∑
j=1

Pjl(s)L(s, φj)L

(
s− n

2
+ 1, ψl

)
+

∞∑
k=1

sQ(k)

ks
, (5)
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where Re s > n−1
2 , Dirichlet polynomials Pjl(s) are not identically zero,

the Dirichlet characters φj , 1 6 j 6 J , are non-equivalent as well as ψl,
1 6 l 6 L.

Now we state the main theorem on c-values of ζ(s;Q) with 2N ∋ n > 4.
Note that Theorem D is c-values of ζ(s;Q) with n = 2.

Theorem 3.1. Let c ∈ C and n > 4 be even. Suppose L > 1 or ŜQ(s) ̸≡ c,
namely, ŜQ(s) is not constantly equal to c. Then, for any n−1

2 < σ1 < σ2 <
n
2 , and, for su�ciently large T , we have

Nc(σ1, σ2, T ;Q) > CT,

where C = C(σ1, σ2,Q) > 0 does not dependent on T .

Remark 3.2. Obviously, the uniqueness theorem for Dirichlet series implies
immediately that ŜQ(s) ≡ c is equivalent to the condition sQ(1) = c and
sQ(k) = 0 for k > 2.

Before we prove the above theorem, let us give some important examples
of Epstein zeta-functions for which Theorem 3.1 holds.

Let ∆(q) be Ramanujan's τ -function de�ned by

∆(q) :=

∞∑
m=1

τ(m)qm = q

∞∑
m=1

(1− qm)24

with q := exp(2πiτ) and τ from the upper half-plane. We de�ne the L-
function L(s;∆) associated to ∆ by L(s;∆) :=

∑∞
m=1 τ(m)m−s. By Theo-

rem 3.1, the following Epstein zeta-functions have in�nitely many c-values,
particularly zeros, o� the critical line Re s = n

4 :

ζ(s; I6) = −4
(
ζ(s)L(s− 2, χ−4)− 4ζ(s− 2)L(s, χ−4)

)
,

ζ(s; I10) =
4

5

(
ζ(s)L(s− 2, χ−4) + 42ζ(s− 4)L(s, χ−4)

)
−2

∑
0̸=λ∈Z[i]

λ4

(λλ)s
,

ζ(s; I12) = c1(2
6 − 26−s)ζ(s)ζ(s− 4) + c2L(s;

√
∆),

where c1 and c2 are some constants and L(s;
√
∆) the L-function (Dirichlet

series) associated to
√
∆. It is well-known that if 2N ∋ n > 10, the cuspital

part of θ(z; In) is non-trivial (see, for example, [18, p. 187]). Therefore,
sIn(k) ̸= 0 for some k ∈ N when n > 10 is even.
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Let L24 be the matrix related to the Leech lattice. A di�erent example
is given by

ζ(s;L24) =
65520

691

(
ζ(s)ζ(s− 11)− L(s;∆)

)
.

Remark 3.3. One has Σ(Q) = 1 for Q = I6, In, where 2N ∋ n > 10, and
L24 in Theorem A. It should be mentioned that Siegel [29] proved that the
number of zeros of ζ(s;Q) in 2 6 Re s 6 n

2 −2, 0 < Im s 6 T is T
π log 2+O(1)

when Q belongs to the genus of In, n > 12.

3.2. Proof of Theorem 3.1

First, suppose that L = 1 and ŜQ(s) ̸≡ c. Let s0 ∈ C be such that n−1
2 <

σ1 < Re s0 < σ2 <
n
2 and

∑J
j=1 Pj(s0)L(s0, φj) ̸= 0, and take 0 ̸= z0 ∈ C

such that

z0

J∑
j=1

Pj(s0)L(s0, φj) +
∞∑
k=1

sQ(k)

ks0
= c.

Let us notice that
∑∞

k=1 sQ(k)k
−s and the series expression of L(s, φj) con-

verge absolutely when Re s > n−1
2 .

Hybrid universality (see De�nition 2.1) gives that L
(
s − n

2 + 1;ψ1

)
can

approximate (in the sense of Voronin) the function f(s) = z0 exp(s − s0)
uniformly on the closed disk K with center s0 and radius r < min

{
σ0 −

n−1
2 , n2 − σ1

}
. Next, assume that

g(s) := z0 exp(s− s0)

J∑
j=1

Pj(s)L(s, φj) +

∞∑
k=1

sQ(k)

ks
− c

does not have zeros on the boundary of K. Obviously, g(s0) = 0. On the
other hand, by Lemma 2.1 and the fact that L

(
s − n

2 + 1;ψ1

)
is hybridly

universal, one has

max
|s−s0|=r

∣∣(ζ(s+ iτ ;Q)− c
)
− g(s)

∣∣ < min
|s−s0|=r

∣∣g(s)∣∣ (6)

An application of Rouché's theorem shows that whenever the inequality (6)
holds, the equation ζ(s + iτ ;Q) = c has a root in the interior of K (see, for
example, Section 8.1 in [34]). From the view point of the hybrid universality,
the measure of such τ ∈ [0, T ] is ≫ T (see also proof of Theorem 8.4.7 from
[21]) which completes the proof.
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In order to consider the case L > 2, let us assume (see (5)) that

ζ(s;Q) =
L∑
l=1

Ql(s)L

(
s− n

2
+ 1, ψl

)
+Q0(s), σ >

n− 1

2
,

where Ql, 0 6 l 6 L, are absolutely convergent Dirichlet series and Ql(s),
1 6 l 6 L, are not identically zero.

Let σ0 be a real number satisfying n−1
2 < σ1 < σ0 < σ2 <

n
2 , and t0 and

δ > 0 be such that Ql(s) ̸= 0 for |s−s0| 6 δ, where s0 = σ0+ it0. The choice
of t0 and δ is possible, since Dirichlet polynomials Ql are not identically zero.
Moreover, we require that δ is such that h(s) := s− s0 +Q0(s)−Q0(s0) ̸= 0
for |s− s0| = δ, and the disk with center s0 and radius δ lies in the strip of
complex numbers with the real part between n−1

2 and n
2 .

Now, applying hybrid joint universality of L(s, ψ1), . . . , L(s, ψL) yields
that, for every ε > 0,

lim inf
T→∞

νT



max
|s−s0|6δ

∣∣∣∣L(s+iτ− n
2+1, ψ1

)
− s

Q1(s)

∣∣∣∣ < ε,

max
|s−s0|6δ

∣∣∣∣L(s+iτ− n
2+1, ψ2

)
− (c−Q0(s0)−s0)

Q2(s)

∣∣∣∣ < ε,

max
36l6L

max
|s−s0|6δ

∣∣∣∣L(s+iτ− n
2+1, ψl

)
− ε

(L−2)Ql(s)

∣∣∣∣ < ε,

max
06l6L

max
|s−s0|6δ

|Ql(s+ iτ)−Ql(s)| < ε


is positive. It should be noted here that, for s0 satisfying c−Q0(s0)−s0 = 0,

we need to replace c−Q0(s0)−s0
Q1(s)

by c−Q0(s0)−s0
Q1(s)

+ ε.
Next easy calculations show that

lim inf
T→∞

νT

{
max

|s−s0|<δ

∣∣(ζ(s+ iτ ;Q)− c)

−
(
s+ (c−Q0(s0)− s0) + ε+Q0(s)− c

)∣∣ ≪ ε

}
> 0.

Hence, by taking su�ciently small ε > 0, we obtain

lim inf
T→∞

νT

{
max

|s−s0|=δ
|(ζ(s+ iτ ;Q)− c)− h(s)| 6 min

|s−s0|=δ
|h(s)|

}
> 0

Therefore, using Rouché's theorem and the fact that h(s0) = 0 completes
the proof.
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