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Abstract. Let Q be a positive definite n x n matrix and ((s; Q) be the
Epstein zeta-function associated with Q. In the present paper, we prove
that, for arbitrary given complex number ¢, the equation ((s; Q) = ¢ has at
least CT, for some positive constant C, solutions in the region Re s > an
when n > 4 is even and Q satisfies certain conditions. As a corollary, we
show that ((s;Iax), where N 3 k # 1,2,4 and I,, is the n-dimensional unit
matrix, have complex zeros in the strip k — 1 < Res < k.
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1. Introduction

1.1. Epstein zeta-functions

In the beginning of the twentieth century, Epstein [12] introduced zeta-
functions associated with quadratic forms. As mentioned in |32, Introduc-
tion|, these zeta-functions are interesting analytical objects which play an
important role in algebraic number theory, the theory of modular forms (see,
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for example, Siegel [30]), and, recently, in chemistry and physics (see, for
instance, Buhler and Crandall [6], Elizalde and Romeo [10], and Elizalde
11]).

Let Q be a positive definite n x n matrix, and write Q[x] := x'Ox for
x € Z". Then the Epstein zeta-function associated with Q is given by

(9= > QK Res>g.
x€Z"\{0}

As some examples of Epstein zeta-functions, we have the following (see
also Section 3.1). Denote by I,, the n-dimensional unit matrix. Let ((s) be
the Riemann zeta-function ((s) := Y 2, n~° where Res > 1, L(s, x) be the
Dirichlet L-function L(s, x) := > ooy x(n)n~*, where Res > 1, and x_4 be
the non-principal Dirichlet character of mod 4. Then we have

C(s;11) = 2¢(2s), ((s;12) = 4¢(s)L(s, x~4),
((s31s) = 8(1 — 2°72)¢(s)¢(s — 1).

For any positive definite n x n matrix Q, the Epstein zeta-function ((s; Q)
is continued analytically elsewhere, except for a simple pole at s = 5. More-
over, the Epstein zeta-function satisfies a functional equation of the Riemann-

type
7 °T'(s)((s; Q) = (detQ)_l/Qws_"/QF(Z - s)((Z — 8 Q_1>. (1)

This functional equation implies that ((s; Q) vanishes at the so-called trivial
zeros s = —m, m € N. All other zeros are said to be nontrivial and are
denoted by p = + 7.

If the Riemann hypothesis, i.e., all nontrivial zeros of ((s) lie on the line
o= %, is true, then all nontrivial zeros of the function ((s;I;) lie on the
critical line o = %. Additionally, if the analogue of the Riemann hypothesis
for the Dirichlet L-function L(s, x—4) holds, then all nontrivial zeros of the
function ((s; I>) lie on the critical line ¢ = § or 0 = 1. The function ¢(s; I4)
is expected to have most of its zeros on the lines ¢ = % and o = %, but
infinitely many zeros lie on o = 1.

The zero-distribution of these Epstein zeta-functions with n = 2 was
firstly investigated by Potter and Titchmarsh [27]. They proved that in-
finitely many zeros lie on the critical line o = % Bateman and Grosswald
[2] showed that Epstein zeta-functions attached to positive definite quadratic

forms ax?+bxy+cy? with discriminant A := b?> —4ac have a real zero between
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2 and 1if k := (2a)"'V/A > 7.00556. Note that this result was announced
by Chowla and Selberg [7] but they have never published a proof. Deuring
[9] and Stark [31] showed that all zeros of these Epstein zeta-functions in the
rectangle —1 < Res < 2, |Im s| < 2k lie on the critical line 0 = 1 and are
simple with the exception of two real zeros between 0 and 1, provided k is
sufficiently large.

It is known that if the binary quadratic form Q[x] has class number
one, then the Epstein zeta-function is up to a constant factor equal to the
Dedekind zeta-function of the related quadratic number field; in this case,
((s; Q) has an Euler product and is expected to satisfy the analogue of the
Riemann hypothesis. If the class number is larger than one, Davenport and
Heilbronn [8] proved an infinitude of zeros in the half-plane of absolute con-
vergence o > 1. Hejhal [16] and Bombieri and Hejhal [4] proved that almost
all zeros of Epstein zeta-functions associated with binary quadratic forms lie
on the critical line subject to the truth of the generalized Riemann hypoth-
esis in combination with an unproved but widely believed conjecture on the
spacing of zeros of L-functions for ideal class characters. Recently, Bombieri
and Mueller [5] obtained upper and lower bounds for the rate of approach
of zeros to the boundary of the zero-free half-plane for certain Epstein zeta
functions, associated to positive definite binary quadratic forms with class
number 2. Moreover, Lee [22] showed an asymptotic formula for the number
of zeros in any strip % <op <oy <l.

It turns out that the zero-distribution of Epstein zeta-functions attached
to quadratic forms in more than two variables has a rather different nature.
For Epstein zeta-functions attached to certain quadratic forms of rank n = 4,
Fujii [13] investigated the real zeros of Epstein zeta functions with Q[x] =
23 + 23 + d(23 + 23). Terras [35] gave examples which have real zeros of
the critical line o = 7 for arbitrary n. Steuding [32] proved that the mean
value of the real parts of the nontrivial zeros of the Epstein zeta-function
is equal to the abscissa of the critical line o = %. Let N(T'; Q) count the
number of nontrivial zeros p =  + iy of ((s; Q) with |y| < T. Denote by
m(Q) the minimum of the values of the quadratic form Q[x] for x € Z™\ {0}
and, finally, let N(Q) count the number of x for which Q[x] = m(Q). Then

Steuding showed the following result (see [32], Theorem 1).

THEOREM A. As T tends to infinity,

2T
N(T; = 0 O(log T
(T Q) - los — m(Q)m(Q_1)+ (logT),
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S (5-%) = —11oa(5(Q) + Ollog ),

[v|<T

where X(Q) is defined by

- (8 (55

The first asymptotic formula is a Riemann-von Mangoldt formula for the
Epstein zeta-function. It should be noted that if 3(Q) is different from 1,
((s; Q) has infinitely many zeros off the critical line o = % (see Remark 3.1).

The combination of both asymptotic formulae of the above theorem leads to

1 n 1
NTg) 2= P73t O <logT)’

" kT

and thus the mean-value of the real parts of the nontrivial zeros of the Epstein
zeta-function ((s; Q) exists and is equal to 7.

It turns out that the distribution of the c-values, i.e., the roots of the
equation ((s; Q) = ¢, behaves similarly to the zero-distribution showed in
Theorem A. Namely, Steuding (see [33], Theorem 1) proved the analogue of
a Riemann-von Mangoldt formula for the counting function N.(o, 00, T; Q)
and asymmetry in the c-values distribution, where N.(o, 00, T’; Q) counts the
number of c-values p. = S.+i7y, with 0 < 8. < 0o and 0 < v, < T'. Moreover,
one can conclude from Theorem 2 in [33] the following fact.

PrROPOSITION 1.1. Let ¢ be a complex number and o1 > max {%, "T_l} fized.
Then, for sufficiently large T, we have

Y (Be—o)<T.

ﬁc>0'1

In particular,
Nc(o1,00,T;Q) < T as T — oo.

It should be noted that Theorem 2 from [33] gives the same estimation
but for c-values with the imaginary part satisfying 7' < v, < 27". However,
the first part of the proposition can be easily showed by applying this theorem
with 277 instead of T' and summing up all resulting estimations.
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The second part of Proposition 1.1 can be easily verified as well, since

1 / 1 /
S Y e T dper

Bc>0'i
0<ve<T 0<y<T 0<ye<T

/ 1 n-1
where o1 > o} > max {7, %5+

Our main propose of this paper is to give a lower bound for the counting
function N.(o1,09,T; Q), provided that ”T_l < 01 < 02 < 5 and the order
n of Q is even and greater that or equal to 4. For a precise formulation,
we refer to Theorem 3.1. As a corollary, we obtain new examples of Epstein
zeta-functions which have complex zeros off the critical line Res = 7§ (see

Remark 3.1).

2. Auxiliary results

2.1. Hybrid universality

In 1975, Voronin [36] showed the universality theorem for the Riemann zeta-
function ((s). To state it, let D := {s € C: 3 <Res <1} and K C D be
a compact set with connected complement. Denote by p(A) the Lebesgue
measure of the set A, and, for T > 0, write vr{...} == T tu{r € [0,7]: ...}
where the dots stands for a condition satisfied by 7. Let H(K) denote the
space of non-vanishing continuous functions on K, which are analytic in the
interior, equipped with the supremum norm || - ||x. The modern version of
the universality for ((s) is as follows.

THEOREM B. For any f € H(K) and any € > 0, we have
liminf vp{|[((s + i) — f(s)|xk <&} > 0.
T—o0

Roughly speaking, this theorem implies that any non-vanishing ana-
lytic function can be uniformly approximated by the Riemann zeta-function.
Subsequently many mathematicians have considered generalizations of uni-
versality (see, for instance, [34]). For example, Voronin also proved the
joint universality theorem, which implies that a collection of Dirichlet L-
functions with non-equivalent characters uniformly and simultaneously ap-
proximates non-vanishing analytic functions. Note that two characters are
non-equivalent if they are not induced by the same character. In slightly
different form this was also established by Gonek [14] and Bagchi [1], in-
dependently (both of these papers are unpublished Doctoral Theses). Let
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Ki,...,K,, C D be compact sets with connected complement. The modern
version of the joint universality for Dirichlet L-functions L(s, x) states:

THEOREM C. Let xyymod g1, ..., Xmmod g, be pairwise non-equivalent
Dirichlet characters, and fi(s) be a non-vanishing continuous function on K;
which is analytic in the interior of K; for 1 <1 < m. Then, for every e > 0,
we have

lim inf VT{lmax |L(s + i1, x1) — fi(s)|| K, < 5} > 0.

T—o0 <I<m

In the present paper, we use so-called hybrid universality, which is a
connection between the Voronin theorem and the classical Kronecker ap-
proximation theorem. The authors used this property to obtain universality
theorems for certain combinations of L-functions with general Dirichlet series
as coefficients in [23| and |24]. Moreover, the authors gave a lower and upper
bound for the number of zeros of certain polynomials of L-functions in [25].
We adopt the approach from [25] to prove the main theorem on c-values of
Epstein zeta-functions (see Theorem 3.1 below).

We denote the distance to the nearest integer by || - ||. The precise defi-
nition of the hybrid universality is as follows.

DEFINITION 2.1. Hybrid joint universality for the set of functions
{Li(8)}1<i<m is the following property: Let K; C D, f; € H(K;) and
{oj hi<j<k be real numbers linearly independent over Q. Then, for any e > 0
and any real numbers {0;}1<j<k, we have
liz inf VT{%?; ILa(s +7) = fis)lx, < & max [[re — 03] < e} >0 (2)

The first result on hybrid universality was proved in weaker form by
Gonek [14] and slightly improved using different method by Kaczorowski and
Kulas [19]. They showed that Dirichlet L-functions satisfy the inequality in
above definition for a,, = logp,, where p, denotes the nth prime number.
The second author [26] proved the hybrid universality in the most general
form for an axiomatically defined wide class of L-functions having Euler
product which contains, for instance, Dirichlet L-functions.

It is worth to note that the Diophantine inequality appeared in (2) plays
a crucial role in estimating the number of c-values from below. Using this
restriction on ¢, one can prove almost periodicity of an absolutely convergent
general Dirichlet series defined by

Zane*)‘"s, where a, € C, X\, € R\ {0}.
n=1
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More precisely, the following lemma based on the approach of Bohr [3], or
Sander and Steuding [28, Section 2], holds.

LEMMA 2.1. Let Py(s) = Y.°°, agne ™n° be a general Dirichlet series.
Then, for every € > 0 and every compact set K lying in the half-plane
of absolute convergence, there exist 6 > 0, N € Z, and a finite set J €
{1,2,...,N} X Zy such that the numbers Ajm,, (j,m) € J, are linearly inde-
pendent over Q and, moreover, if

TAen,

max o N

(kn)ed

)

then it holds that

P, iT) — P .
1I£ka<XnH (s +9T) k(S)HK <e

Proof. Let us take € > 0, and a compact set K is fixed. Then there exists
a positive integer M such that

—AxnRes E
s e 2 el <
Now let us take the set J of indices such that {\;m, : (j,m) € J} is the
basis of a vector space over Q generated by all numbers A\, with n < M.
Moreover, let N be a positive integer such that all these numbers can be
expressed as a linear combination of elements )‘]%, (j,m) € J, with integer
coefficients. Then, for s € K and 1 < k < n, we have

|Py(s+iT) — Pi(s)] < Z |an] ‘(e—)\kn(S—FiT) _ )

n<M
+2 Z |akn| e—)\knRes
n>M
» 2 Aj 2
< max e_”’\’““—l‘—l——6<< max || Z2m —l——g.
n<M 3 Gmyed || N 3
Finally, taking suitable § > 0 completes the proof. O

Thus, since hybrid universality combines Diophantine approximations
and universality, one can use this property to show that any linear combina-
tion of hybrid universal L-functions with an absolutely convergent Dirichlet
series as coefficients approximates (in the sense of Voronin’s theorem) an an-
alytic function having at least one c-values in certain disk. More details will
be given in Section 3.2. Then the classical Rouché theorem gives the lower
bound for the number of c-values for such a linear combination.
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2.2. Epstein zeta-functions and L-functions

It is well known that if A < 0 is a fundamental discriminant, then equiva-
lence classes of binary quadratic forms of discriminant A are in one-to-one
correspondence with ideal classes of the field Q(v/A). The number of repre-
sentations of a number k by a quadratic form is the number of integer ideals
of norm k in the corresponding ideal class, times the number w of roots of
unity in Q(v/A). Let X}, ..., x4, be characters of the class field Q(v/A) and
Oa[x] be a quadratic form with integer coefficients whose discriminant is
equal to the discriminant of Q(v/A). Then it follows that

((s:Qa) = > _ arL(s,x}),
k=1

where ay, € C, X, # X and X}, # X for k # j. Note that the number m in
the equation above is greater than 1 under the condition A < —1 (see, for
example, [20, p. 283]). Similarly to Theorem 7.4.3 form [20], we obtain the
following theorem by the equation above and joint universality for Dirichlet
L-functions (see Theorem C).

THEOREM D. Suppose that the class number of the field Q(v/A), where A is
a negative integer, is greater than 1. Then, for any % < o1 <oy <1 and for
T sufficiently large, the region o1 < 0 < 02, 0 < t < T contains at least CT
c-values of ((s;9a), where C = C(o1,02,9a) > 0 does not depend on T,
and c 1s an arbitrary given complex number.

Hereafter, assume that Q[x| € Z for any x € Z" \ {0}. For k € Z>¢, we
define ro(k) by the number of x € Z™ which satisfies Q[x] = k. Then the

Epstein zeta-function ((s; Q) is also expressed by

3

((s:Q)=> Tiik), Res > .
k=1

It is well-known (see, for example, |[15]) that the corresponding theta series
s .
0(z; Q) := ng(k)e%”kz
k=0

becomes a modular form of weight %, which decomposes into the summation
of an Eisenstein series and a cusp form. More precisely, we have

0(z; Q) = Ego(2) + So(2),
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where Eg(z) := Y72, eo(k)e® ™ is an Eisenstein series and So(2) :== Y ooy
so0(k)e?™** is a cusp form. Moreover, it is known that the coefficient sg(k)
is evaluated by

k) < kn/A=1/2+e if s even,
s
© Er/A=14+e if p s odd.

Therefore, the Epstein zeta-function ((s; Q) is expressed by
((s:Q) = Eg(s) + Sa(s), (4)
where Eo(s) and So(s) are defined by

(3)

oo

~ eolk ~ > sol(k n
Eqo(s) == Qk(s ), So(s) = E Qk(s ), Res > 5
k=1 k=1

Hence, ((s; Q) is decomposed into the summation of the L-function associ-
ated to the Eisenstein series and the L-function associated to the cusp form.

Now we suppose that n is even and n > 4. Then the Eisenstein series
Eg(z) is a modular form of weight 5 and level N, where N is a positive
integer such that NA~! becomes an integral matrix for A = 2Q (see, for
example, [18, p. 185]). In Theorem 44 from [17], Hecke showed the following.

THEOREM E. Letn be even andn > 4. Then the series EQ(S) 15 expressed by

some linear combination of the form (t1t2)"*L(s,x1)L(s — % + 1, x2), where

t1, to are positive divisors of level N and x1, x2 are Dirichlet characters
N

N .
modulo o 6 respectively.

3. Main result

3.1. Main Theorem

Before we formulate the main result of this paper, we shall express a given
Epstein zeta-function as a linear combination of Dirichlet L-functions. Recall
that a Dirichlet polynomial is a finite Dirichlet series > " | a,n~* with com-
plex coefficients a,. Now let n be even and n > 4. It should be noted that
the series expression of §Q(S) converges absolutely in the region Res > "T_l
because of (3). Therefore, by (4) and Theorem E, we have

L J n [e'e) SQ(]C)
(50 = XS Pule) Lo (s - 5+ 1) + 320 )

=1 j=1
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where Res > "; , Dirichlet polynomials Pj(s) are not identically zero,
the Dirichlet characters ¢;, 1 < j < J, are non-equivalent as well as 1y,
1<I< L.

Now we state the main theorem on c-values of ((s; Q) with 2N > n > 4.

Note that Theorem D is c-values of ((s; Q) with n = 2.

THEOREM 3.1. Let ¢ € C and n > 4 be even. Suppose L > 1 or So(s) # ¢,
namely, SQ( ) is not constantly equal to c. Then, for any 5% < 01 < 09 <

n

5, and, for sufficiently large T', we have
Ne(o1,02,T;Q) > CT
where C' = C(o1,02,Q) > 0 does not dependent on T.

REMARK 3.2. Obviously, the uniqueness theorem for Dirichlet series implies
immediately that Sg(s) = ¢ is equivalent to the condition sg(1) = ¢ and
sg(k) =0 for k > 2.

Before we prove the above theorem, let us give some important examples
of Epstein zeta-functions for which Theorem 3.1 holds.

Let A(g) be Ramanujan’s 7-function defined by

o o0
:ZT(m qz 1—¢™)
m=1

m=1

with ¢ := exp(2miT) and 7 from the upper half-plane. We define the L-
function L(s; A) associated to A by L(s; A) :== > >°_, 7(m)m~*. By Theo-
rem 3.1, the following Epstein zeta-functions have infinitely many c-values,
particularly zeros, off the critical line Res = 7:

C(s;ls) = —4(C(s)L(s —2,x-4) —4C(s — 2)L(s, x-4)),
Cls5T0) = £ (G — 2, x-0) + 4%C(s — L(s,x )
)\4
-9 S
o O

C(s;T) = (25 —257%)C(s)C(s — 4) + eaL(s;VA),

where ¢; and ¢ are some constants and L(s; vA) the L-function (Dirichlet
series) associated to VA. Tt is well-known that if 2N 3 n > 10, the cuspital
part of 6(z;I,) is non-trivial (see, for example, [18, p. 187]). Therefore,
sr, (k) # 0 for some k € N when n > 10 is even.
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Let £o4 be the matrix related to the Leech lattice. A different example
is given by
65520

C(s; L) = W(C(S)C(S —11) — L(s; A)).

REMARK 3.3. One has £(Q) = 1 for Q = I, I,, where 2N 5 n > 10, and
Lo4 in Theorem A. Tt should be mentloned that Siegel [29] proved that the
number of zeros of ((s;Q) in2 < Res < —2,0 < Ims < Tis Llog2+0(1)
when Q belongs to the genus of I,,, n > 12.

3.2. Proof of Theorem 3.1

First, suppose that L = 1 and §Q(s) # c. Let sy € C be such that %51
o1 < Resp < 02 < 5 and ijle(so)L(so,goj) # 0, and take 0 # z9 € C
such that

J %)

ZOZP( 507@]

j=1 k=1

Let us notice that Y p ; so(k)k™® and the series expression of L(s, ;) con-
verge absolutely when Res > "=

Hybrid universality (see Definition 2.1) gives that L(s — % + 1;11) can
approximate (in the sense of Voronin) the function f(s) = zpexp(s — so)
uniformly on the closed disk K with center sy and radius r < min {ao —

”Tfl v = 01} Next, assume that

3

J
g(s) := zpexp(s — so ZPJ (s,05) +
j=1 k=1

does not have zeros on the boundary of . Obviously, g(sp) = 0. On the
other hand, by Lemma 2.1 and the fact that L(s -5+ 1;¢1) is hybridly
universal, one has

max |(¢(s+im;Q) —c) —g(s)] < min [g(s)] (6)

|s—so|=r |[s—so|=r

An application of Rouché’s theorem shows that whenever the inequality (6)
holds, the equation ((s + i7; Q) = ¢ has a root in the interior of K (see, for
example, Section 8.1 in [34]). From the view point of the hybrid universality,
the measure of such 7 € [0,7] is > T (see also proof of Theorem 8.4.7 from
[21]) which completes the proof.
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In order to consider the case L > 2, let us assume (see (5)) that

n—1

ZQZ <S—+1¢z>+Qo(8)7 0>,

where @, 0 < | < L, are absolutely convergent Dirichlet series and Q(s),
1 <1 < L, are not identically zero.

Let o¢ be a real number satisfying 25— L oo <og<og< 5, and tg and
d > 0 be such that Q;(s) # 0 for |s — so| < d, where sg = og+itg. The choice
of tg and 0 is possible, since Dirichlet polynomials Q; are not identically zero.
Moreover, we require that ¢ is such that h(s) := s —so+ Qo(s) — Qo(so) # 0
for |s — sp| = 9, and the disk with center sg and radius ¢ lies in the strip of
complex numbers with the real part between ”7*1 and 3.

Now, applying hybrid joint universality of L(s,1),...,L(s,%r) yields
that, for every € > 0,

\

)
L S | S B
\snﬁ\)ia (s—HT 5+ 1/’1) 0| <&
max |L{ stir—241, 1/,2) (Qusorso)|
liminf vp{  ls—sol<d ( 2 @2(s)
T—00 I . . §
3121252 |sms%\x<5 sHIT—3+1 9 25| <5
max max s+t s)| < e
[ 0<I<L |s— 50\<5|Ql( ) = Qo) )

is positive. It should be noted here that, for s¢ satisfying ¢ — Qo (so) —so = 0,

c—Qo(s0)—5s0 c—Qo(s0)—5s0
ne by 01(5) + €.

we need to replace
Next easy calculations show that

limianT{ max |(((s+iT; Q) —c)

T—00 |s—so|<8

— (54 (¢ = Qo(so0) — 50) + € + Qu(s) — ¢)| <<5} > 0.

Hence, by taking sufficiently small € > 0, we obtain

N

liTrginfl/T{ max |(¢(s+i1;Q) —¢) — h(s)] min |h(s)\} >0

|s—so|=68 |s—so|=68

Therefore, using Rouché’s theorem and the fact that h(sg) = 0 completes
the proof.
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