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ZETA-FUNCTIONS OF WEIGHT LATTICES
OF COMPACT CONNECTED
SEMISIMPLE LIE GROUPS
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Abstract. We de�ne zeta-functions of weight lattices of compact con-
nected semisimple Lie groups. If the group is simply-connected, these zeta-
functions coincide with ordinary zeta-functions of root systems of associa-
ted Lie algebras. In this paper, we consider the general connected (but
not necessarily simply-connected) case, prove the explicit form of Witten's
volume formulas for these zeta-functions, and further prove functional rela-
tions among them which include their volume formulas. Also, we give new
examples of zeta-functions for which parity results hold.
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1. The background and the motivation

Let M be a compact 2-dimensional manifold, G a compact connected semisimp-
le Lie group acting as a gauge group, and E a G-bundle over M . Motivated by
2-dimensional quantum gauge theories, Witten [37] evaluated the volume of the
moduli space M of �at connections on E up to gauge transformations. Such a
result can be regarded as a limit of Verlinde's formula [35] when M is orientable,
but Witten developed a more elementary method, based on the decomposition of
M into three-holed spheres. The main result in [37] is now called Witten's volume
formula, which expresses the volume of M in terms of special values of the Dirichlet
series

ζW (s;G) =
∑
ψ

(dimψ)−s, (1.1)
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where ψ runs over all isomorphism classes of �nite dimensional irreducible repre-
sentations of G.

Let g = Lie(G) be the Lie algebra of G, and de�ne

ζW (s; g) =
∑
φ

(dimφ)−s, (1.2)

where the summation runs over all isomorphism classes of �nite dimensional ir-
reducible representations φ of g. When G is simply-connected, then there is a
one-to-one correspondence between φ and ψ. In fact, each φ is the di�erential of a
certain ψ, and so

ζW (s; g) = ζW (s;G). (1.3)

Zagier [38] formulated the series (1.2) and called them Witten's zeta-functions (see
also Gunnells-Sczech [5]). Witten's volume formula especially implies

ζW (2k; g) = CW (2k, g)π2kn (1.4)

for k ∈ N, where n is the number of all positive roots of g and CW (2k, g) is a rational
number.

Before proceeding further, here we �x several notations. Let N be the set of
positive integers, N0 = N ∪ {0}, Z the ring of rational integers, Q the rational
number �eld, R the real number �eld, C the complex number �eld, respectively.

Let ∆ be the set of all roots of g, ∆+ the set of all positive roots of g (hence
n = |∆+|), Ψ = {α1, . . . , αr} the fundamental system of ∆, α∨

j the coroot of αj , 1 6
j 6 r. Let λ1, . . . , λr be the fundamental weights satisfying ⟨α∨

i , λj⟩ = λj(α
∨
i ) = δij

(Kronecker's delta).
Witten's zeta-function corresponding to g = sl(2) is nothing but the Riemann

zeta-function ζ(s) and (1.4) implies Euler's well-known formula for ζ(2k). For more
general g, Szenes [25, 26], and also Gunnells and Sczech [5], introduced certain
methods (di�erent from each other) of computing CW (2k, g).

In [12, 17], the authors introduced the multi-variable version of Witten's zeta-
function

ζr(s; g) =
∞∑

m1=1

. . .
∞∑

mr=1

∏
α∈∆+

⟨α∨,m1λ1 + . . .+mrλr⟩−sα , (1.5)

where s = (sα)α∈∆+ ∈ Cn. When g is of type Xr, where X = A,B,C,D, E, F, or
G, we call (1.5) the zeta-function of the root system of type Xr, and denote it by
ζr(s;Xr). Putting

K(∆) =
∏
α∈∆+

⟨α∨, λ1 + . . .+ λr⟩, (1.6)

and using [17, (1.5) and (1.7)], we see that

K(∆)sζr(s, . . . , s; g) = ζW (s; g). (1.7)
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In [18], the authors introduced a root-system theoretic generalization of Ber-
noulli numbers and periodic Bernoulli functions, and express CW (2k, g) explicitly
in terms of generalized periodic Bernoulli functions P(k,y;∆). Therefore, we now
have su�ciently explicit information on formula (1.4). Moreover, in [12, 14, 18, 19,
22, 33], we proved various functional relations among zeta-functions (1.2), which
include evaluation formulas like (1.4) as special cases.

However, the group G is not necessarily simply-connected in Witten's paper
[37]. (In fact, this point is emphasized by Witten himself on p. 182 of [37].) When
G is not simply-connected, relation (1.3) does not hold. It is the aim of the present
paper to consider such situation; that is, to study the zeta-functions and volume
formulas in the sense of original formulation of Witten [37].

For this purpose, we introduce the multi-variable version of ζW (s;G). From
(1.5) we see that the multi-variable version of ζW (s; g) can be regarded as the zeta-
function of the weight lattice of g. Similarly, in the present paper we will de�ne a
multi-variable zeta-function of the weight lattice of G. Actually, this zeta-function,
de�ned in Section 3, is a partial sum of ζr(s; g). The volume formula for this zeta-
function is given as Theorem 3.2, which gives an explicit formula for the values of
this zeta-function at s = 2k, where k = (kα)α∈∆+ ∈ Nn satisfying kα = kβ if α and
β are of the same length. As explicit examples, in Section 4, we consider the cases
of types Ar, Br and Cr, r 6 3, and evaluate the associated zeta-functions in these
cases.

Since Theorem 3.2 is a formula for s = 2k, it is not useful when we consider
the values at odd integer points. In order to study such cases, in Section 5, we
give some functional relations among zeta-functions of types A2 and C2(≃ B2).
Those relations produce explicit formulas for special values of zeta-functions at
some points of the form s = l = (lα)α∈∆+

, where lα ∈ N and some of them are
odd. Those results include not only evaluation formulas given in Section 4 but also
another type of evaluation formulas which can be regarded as certain extensions of
the previous results in [14, 27, 30, 33]. In Section 6, we consider so-called parity
results for zeta values of types A2 and C2. We prove that parity results hold for
the zeta-functions associated with the groups PU(3) and PSp(2).

The present paper was already posted to the arXiv in 2010 (arXiv:math/1011.0323).
A continuation of the present paper, in which the details of the case of type A3 are
discussed, was separately published in [20] in 2012.

2. A general form of zeta-functions

We begin our theory with the de�nition of rather general form of zeta-functions.
We use the same notation as in [15, 17, 18] (see also [12, 13, 16, 19]). For the details
of basic facts about root systems and Weyl groups, see [3, 6, 7].

Let V be an r-dimensional real vector space equipped with an inner product
⟨·, ·⟩. The norm ∥·∥ is de�ned by ∥v∥ = ⟨v, v⟩1/2. The dual space V ∗ is identi�ed
with V via the inner product of V . Let ∆ be a �nite reduced root system which
may not be irreducible, and Ψ = {α1, . . . , αr} its fundamental system. We �x ∆+
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and ∆− as the set of all positive roots and negative roots respectively. Then we
have a decomposition of the root system ∆ = ∆+

⨿
∆− . Let Q = Q(∆) be the

root lattice, Q∨ the coroot lattice, P = P (∆) the weight lattice, P∨ the coweight
lattice, P+ the set of integral dominant weights and P++ the set of integral strongly
dominant weights, respectively de�ned by

Q =
r⊕
i=1

Zαi, Q∨ =
r⊕
i=1

Zα∨
i , (2.1)

P =
r⊕
i=1

Zλi, P∨ =
r⊕
i=1

Zλ∨i , (2.2)

P+ =
r⊕
i=1

N0 λi, P++ =
r⊕
i=1

Nλi, (2.3)

where the fundamental weights {λj}rj=1 and the fundamental coweights
{λ∨j }rj=1 are the dual bases of Ψ

∨ and Ψ satisfying ⟨α∨
i , λj⟩ = δij and ⟨λ∨i , αj⟩ = δij

respectively. A coweight µ ∈ P∨ is said to be minuscule if 0 6 ⟨µ, α⟩ 6 1 for all
α ∈ ∆. It is known that a minuscule coweight is one of fundamental coweights and
as a system of representatives for P∨/Q∨, we can take {0} ∪ {λ∨j }j∈J , where J is
the set of all indices of minuscule coweights.

Let

ρ =
1

2

∑
α∈∆+

α =

r∑
j=1

λj (2.4)

be the lowest strongly dominant weight. Then P++ = P+ + ρ. Let σα be the
re�ection with respect to a root α ∈ ∆ de�ned as

σα : V → V, σα : v 7→ v − ⟨α∨, v⟩α. (2.5)

For a subset A ⊂ ∆, let W (A) be the group generated by re�ections σα for all
α ∈ A. In particular, W = W (∆) is the Weyl group, and {σj = σαj | 1 6 j 6 r}
generates W . For w ∈W , denote ∆w = ∆+ ∩ w−1∆−.

Let Aut(∆) be the subgroup of all the automorphisms GL(V ) which stabilizes
∆. Then the Weyl group W is a normal subgroup of Aut(∆) and there exists a
subgroup Ω ⊂ Aut(∆) such that Aut(∆) = ΩnW . The subgroup Ω is isomorphic to
the group Aut(Γ) of automorphisms of the Dynkin diagram Γ (see [6, Section 12.2]).

For a set X, denote by F(X) the set of all complex valued functions on X. For
a function f ∈ F(P ), we de�ne a subset

Hf = {λ ∈ P | f(λ) = 0} (2.6)

and for a subset A of F(P ), de�ne HA =
∪
f∈AHf . Note that an action of W is

induced on F(P ) as (wf)(λ) = f(w−1λ).
Let f ∈ F(P/Q). Since P∨/Q∨ is regarded as the dual of P/Q over Q/Z, f can

be expanded as follows:

f(λ) =
∑

µ∈P∨/Q∨

f̂(µ)e2πi⟨µ,λ⟩, (2.7)
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where ⟨ , ⟩ is regarded as an inner product on P∨/Q∨, and f̂ : P∨/Q∨ → C is given
by

f̂(µ) =
1

|P/Q|
∑

λ∈P/Q

f(λ)e−2πi⟨µ,λ⟩, (2.8)

because for ν ∈ P∨/Q∨ we have∑
λ∈P/Q

e2πi⟨ν,λ⟩ = |P/Q|δν,0. (2.9)

Note that f is automatically W -invariant because for λ ∈ P we have σα(λ) =
λ− ⟨α∨, λ⟩α ≡ λ (mod Q).

For s = (sα) ∈ Cn, y ∈ V and f ∈ F(P/Q), we de�ne

ζr(s,y, f ;∆) =
∑

λ∈P++

f(λ)e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα
. (2.10)

Note that ζr(s,y, 1;∆) was already studied in our previous work (see [15, Section 3],
[18, Section 4]). When ∆ = ∆(Xr) = ∆(g) is the root system attached to g of type
Xr, then ζr(s,0, 1;∆) coincides with ζr(s; g) (see (1.5)). For w ∈ Aut(∆), de�ne
the action of w on ζr by

(wζr)(s,y, f ;∆) = ζr(w
−1s, w−1y, w−1f ; ∆), (2.11)

where w−1(s) = (swα)α∈∆+ (if wα ∈ ∆−, we identify it with −wα). Then it is easy
to see that for w ∈ Aut(Γ),

(wζr)(s,y, f ;∆) = ζr(s,y, f ;∆). (2.12)

Remark 1. Here we discuss the reasons why we include the exponential factor
e2πi⟨y,λ⟩ in the de�nition (2.10). This is analogous to the Lerch zeta-function

ϕ(s, α) =
∞∑
m=1

e2πimα

ms
. (2.13)

It is clear that the form (2.10) with an exponential factor is useful in the study of
multiple series with twisting factors, such as the series discussed in Example 4.1
and Remark 4, or multiple L-functions with Dirichlet characters [15]. Moreover,
the existence of this exponential factor simpli�es our argument in various places. In
the argument below, (2.14), (2.19) etc. are impossible to show without using this
factor.

Remark 2. It is to be noted that we may regard y ∈ V/Q∨ in (2.10). This is
because when a ∈ Q∨ we have ⟨a, λ⟩ ∈ Z, hence e2πi⟨y+a,λ⟩ = e2πi⟨y,λ⟩, for any
λ ∈ P++.

Proposition 2.1. The function ζr(s,y, f ;∆), as a function in s, can be continued
meromorphically to the whole space Cn.
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Proof. By use of the expression (2.7), noting Remark 2, we obtain

ζr(s,y, f ;∆) =
∑

λ∈P++

∑
µ∈P∨/Q∨

f̂(µ)e2πi⟨µ,λ⟩e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα

=
∑

µ∈P∨/Q∨

f̂(µ)
∑

λ∈P++

e2πi⟨y+µ,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα

=
∑

µ∈P∨/Q∨

f̂(µ)ζr(s,y + µ, 1;∆). (2.14)

In [15, Section 8], we showed that ζr(s, µ, 1;∆) can be continued meromorphically
to the whole space, hence, so can be ζr(s,0, f ; ∆) from (2.14). More generally the
recent result of the �rst-named author in [11] gives that ζr(s,y, 1;∆), y ∈ V , can
be continued meromorphically, so can be ζr(s,y, f ; ∆) from (2.14). This completes
the proof of Proposition 2.3.

Let
S(s,y, f ;∆) =

∑
λ∈P\H∆∨

f(λ)e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα
. (2.15)

Then, in the same way as in the case of zeta-functions, we obtain

S(s,y, f ;∆) =
∑

µ∈P∨/Q∨

f̂(µ)S(s,y + µ, 1;∆). (2.16)

Here we recall the generalized periodic Bernoulli functions P(k,y;∆) associated
with ∆ as follows (for the details, see [18, Section 4]). For k = (kα)α∈∆+ ∈ Nn0 and
y ∈ V (or ∈ V/Q∨), we de�ne

P(k,y;∆)

=

∫ 1

0

. . .

∫ 1

0

( ∏
α∈∆+\Ψ

Bkα(xα)
)

×
( r∏
i=1

Bkαi

({
⟨y, λi⟩−

∑
α∈∆+\Ψ

xα⟨α∨, λi⟩
})) ∏

α∈∆+\Ψ

dxα, (2.17)

where {Bk(x)} are the classical Bernoulli polynomials de�ned by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

We have already obtained

S(k,y, 1;∆) = (−1)n
( ∏
α∈∆+

(2π
√
−1)kα

kα!

)
P(k,y;∆) (2.18)

for k ∈ (N>2)
n (see [18, (4.19)]). This function P(k,y;∆) may be regarded as

a generalization of the periodic Bernoulli function and Bk(∆) = P(k, 0;∆) the
Bernoulli number.
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Note that Szenes [25, 26] also studied generalizations of Bernoulli polynomials
from the viewpoint of the theory of arrangement of hyperplanes, which include
P(k,y; ∆) mentioned above.

Suggested by (2.16), we de�ne generalized Bernoulli functions associated with
f and ∆ by

P(k,y, f ;∆) =
∑

µ∈P∨/Q∨

f̂(µ)P(k,y + µ;∆). (2.19)

Then, by (2.16), (2.18) and (2.19), we have

S(k,y, f ;∆) = (−1)n
( ∏
α∈∆+

(2π
√
−1)kα

kα!

)
P(k,y, f ;∆) (2.20)

for k ∈ (N>2)
n.

In [16, Section 9] and [18, Section 3], we constructed the generating function of
P(k,y; ∆), which is

F (t,y;∆) =
∑
k∈Nn

0

P(k,y;∆)
∏
α∈∆+

tkα

kα!
. (2.21)

Since F (t,y;∆) can be evaluated explicitly ([15, Theorem 4.1]), we can evaluate
P(k,y+µ;∆) from the expansion of F (t,y;∆). In particular, we �nd that P(k, µ; ∆)
∈ Q for any µ ∈ P∨/Q∨.

Theorem 2.2. For s = k = (kα)α∈∆+ ∈ Nn>2, y ∈ V and f ∈ F(P/Q),∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y, f ;∆)

= (−1)n
( ∏
α∈∆+

(2π
√
−1)kα

kα!

)
P(k,y, f ;∆). (2.22)

Proof. Since P \H∆∨ =
∪
w∈W w(P++), we have

S(s,y, f ;∆) =
∑

λ∈P\H∆∨

f(λ)e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα

=
∑
w∈W

∑
λ∈P++

f(wλ)e2πi⟨y,wλ⟩
∏
α∈∆+

1

⟨α∨, wλ⟩sα

=
∑
w∈W

∑
λ∈P++

(w−1f)(λ)e2πi⟨w
−1y,λ⟩

∏
α∈∆+

1

⟨w−1α∨, λ⟩sα

=
∑
w∈W

( ∏
α∈∆w−1

(−1)−sα
)
ζr(w

−1s, w−1y, w−1f ;∆), (2.23)

where the last equality follows by rewriting α to wα, and when α ∈ −∆w =
w−1∆+ ∩∆− further replacing α by −α (see the proof of Theorem 4.3 in [18]).

Combining (2.20) and the W -invariance of f , we obtain the assertion of the
theorem.
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In the following sections, we treat some special cases. Let A ⊂ P with A+Q =
A. Let ιA : P → {0, 1} be the characteristic function of A de�ned by

ιA(λ) =

{
1 if λ ∈ A,
0 if λ ̸∈ A.

(2.24)

Then ιA can be regarded as a function on P/Q. Hence, (2.7) and (2.8) imply that

ιA(λ) =
∑

µ∈P∨/Q∨

ι̂A(µ)e
2πi⟨µ,λ⟩, (2.25)

where ι̂A : P∨/Q∨ → C is given by

ι̂A(µ) =
1

|P/Q|
∑

λ∈P/Q

ιA(λ)e
−2πi⟨µ,λ⟩ =

1

|P/Q|
∑

λ∈A/Q

e−2πi⟨µ,λ⟩. (2.26)

3. Zeta-functions of weight lattices of Lie groups

Now we de�ne zeta-functions of weight lattices of Lie groups. Let G̃ be a simply-
connected compact semisimple Lie group, and g = Lie(G̃). There is a one-to-
one correspondence between a connected compact semisimple Lie group G whose
universal covering group is G̃, and a lattice L with Q(∆(g)) ⊂ L ⊂ P (∆(g)) up to
automorphisms (see Remark 3) by taking L = L(G) as the weight lattice of G. Let
L+ = P+ ∩ L.

We de�ne the zeta-function of the weight lattice L = L(G) of the semisimple
Lie group G by

ζr(s,y;G) = ζr(s,y;L;∆) :=
∑

λ∈L++ρ

e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα
. (3.1)

This is the case f = ιA, A = L+ ρ and ∆ of (2.10), and so, by Proposition 2.1, we
see that this zeta-function can be continued meromorphically to Cn. When y = 0,
we sometimes write this zeta-function as ζr(s;G) or ζr(s;L;∆) for brevity. It is to
be noted that as a generalization of (1.7), we have

K(∆)sζr(s, . . . , s;G) = ζW (s;G) (3.2)

and, if G = G̃, then L = P and ζr(s; G̃) coincides with ζr(s; g) de�ned in Section 1.
For any lattice M , we de�ne M∗ = Hom(M,Z). Since Q∗ = P∨ and P ∗ = Q∨,

from Q ⊂ L ⊂ P we obtain

P∨ = Q∗ ⊃ L∗ ⊃ P ∗ = Q∨. (3.3)

We de�ne

δL∗/Q∨(µ) =

{
1 if µ ∈ L∗/Q∨,

0 if µ /∈ L∗/Q∨.
(3.4)
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Proposition 3.1. Let L be a lattice satisfying Q ⊂ L ⊂ P . For µ ∈ P∨/Q∨, we
have

ι̂L+ρ(µ) =
(−1)⟨µ,2ρ⟩

|P/L|
δL∗/Q∨(µ) ∈ Q. (3.5)

Proof. We have∑
λ∈(L+ρ)/Q

e−2πi⟨µ,λ⟩ = (−1)⟨µ,2ρ⟩
∑

λ∈L/Q

e−2πi⟨µ,λ⟩.

Note that (−1)⟨µ,2ρ⟩ ∈ {1,−1} due to ρ ∈ Q/2. We obtain

∑
λ∈L/Q

e−2πi⟨µ,λ⟩ =

{
|L/Q| if µ ∈ L∗/Q∨,

0 if µ /∈ L∗/Q∨.

Therefore, (2.26) gives

ι̂L+ρ(µ) = (−1)⟨µ,2ρ⟩
|L/Q|
|P/Q|

δL∗/Q∨(µ).

This completes the proof of Proposition 3.1.
In particular,

ι̂P+ρ(µ) =
1

|P/Q|
∑

λ∈(P+ρ)/Q

e−2πi⟨µ,λ⟩ = δµ,0 (3.6)

and

ι̂Q+ρ(µ) =
1

|P/Q|
∑

λ∈(Q+ρ)/Q

e−2πi⟨µ,λ⟩ =
(−1)⟨µ,2ρ⟩

|P/Q|
. (3.7)

We de�ne
P(k,y;L;∆) = P(k,y, ιL+ρ;∆). (3.8)

Note that since P/L ≃ L∗/Q∨ ≃ π1(G), this can also be written as

P(k,y;L;∆) =
1

|π1(G)|
∑

µ∈π1(G)

(−1)⟨µ,2ρ⟩P(k,y + µ;∆) (3.9)

by (2.19) and Proposition 3.1.
We can compute P(k,y;L;∆) explicitly by (2.19). In particular, combining

with (3.5) we have for ν ∈ P∨/Q∨,

P(k, ν;L;∆) ∈ Q. (3.10)

From this fact, we can deduce the following.
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Theorem 3.2. For a compact connected semisimple Lie group G, let ∆ = ∆(G)
be its root system, and L = L(G) be its weight lattice. Let k = (kα)α∈∆+ ∈ Nn,
n = |∆+|, satisfying kα = kβ whenever ∥α∥ = ∥β∥. Let κ =

∑
α∈∆+

2kα. Then, for
ν ∈ P∨/Q∨, we have

ζr(2k, ν;G)
= ζr(2k, ν;L;∆)

=
(−1)n

|W |

( ∏
α∈∆+

(2π
√
−1)2kα

(2kα)!

)
P(2k, ν;L;∆) ∈ Q · πκ. (3.11)

Proof. By Theorem 2.2 with s = 2k and y = ν, we obtain∑
w∈W

ζr(w
−1(2k), w−1ν;L;∆) = (−1)n

( ∏
α∈∆+

(2π
√
−1)kα

kα!

)
P(k,y;L;∆).

Since roots of the same length form a single Weyl-orbit and w−1ν ≡ ν (mod Q∨),
the left-hand side of the above is∑

w∈W
ζr(2k, ν;L;∆) = |W |ζr(2k, ν;L;∆).

The assertion of the theorem follows from this and (3.10).
This theorem is the explicit form of the volume formula for the zeta-function of

the lattice L = L(G). In the case when L = P , (3.11) coincides with our previous
result in [18, Theorem 4.6].
Remark 3. The correspondence between Lie groups and lattices is a well-known
fact, but here we sketch the demonstration for the convenience of readers. Let G
be a compact connected semisimple Lie group, whose universal covering group is
G̃. There is a one-to-one correspondence between isomorphism classes of �nite di-
mensional irreducible representations of G and dominant analytically integral forms
(for example, [10, Theorem 5.110]). The set of dominant analytically integral forms
produces a sublattice L = L(G) of the weight lattice (or the lattice of algebraically
integral forms) P of g, and L includes the root lattice Q ([10, (4.63)]). In particular,
L(G̃) = P . Conversely, let G̃ be a simply-connected Lie group, g = Lie(G̃), and
let L be a lattice satisfying Q = Q(∆(g)) ⊂ L ⊂ P = P (∆(g)). Then (3.3) holds.
Since P∨/Q∨ is isomorphic to the center Z̃ of G̃ by the mapping

Φ : P∨ ∋ µ 7→ expG̃(2πiµ) ∈ Z̃

(where expG̃ means the exponential mapping associated with G̃), we may regard
L∗/Q∨ as a subgroup of G̃. De�ne G = G̃/(L∗/Q∨). We show that the lattice
corresponding to G is L. Write L1 = L(G). Take a maximal torus K of G,
and k = Lie(G). Let λ ∈ L and H ∈ k with expG(H) = 1. The last condition
implies expG̃(H) ∈ Φ(L∗), so H ∈ 2πiL∗, λ(H) ∈ 2πiZ. Therefore λ ∈ L1 by [10,
Proposition 4.58], hence L ⊂ L1. On the other hand, (L∗

1 : Q∨) = (L∗
1 : P ∗) =

(P : L1), but the right-hand side is equal to (L∗ : Q∨) by [10, Proposition 4.67].
Therefore, (L∗

1 : Q∨) = (L∗ : Q∨), and we can conclude that L1 = L.
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4. Explicit forms of zeta-functions

In this section, we will give several examples of explicit forms of zeta-functions
de�ned by (3.1). When L = P , the zeta-function is nothing but ζr(s; g), so our
main concern is the case P ) L ⊃ Q.

Example 4.1. We �rst study the case of A2 type. Let ∆ = ∆(A2) with Ψ =
{α1, α2}, ∆+ = {α1, α2, α1+α2}, P = Zλ1+Zλ2, Q = Zα1+Zα2, and ρ = λ1+λ2.
It is known that (P : Q) = 3 (see [3, Planche I]). Therefore, the only lattice L with
P ) L ⊃ Q is Q. Then Q+ = P+ ∩Q. We show

Q+ + ρ = {m1λ1 +m2λ2 |m1,m2 ∈ N, m1 ≡ m2 (mod 3)} . (4.1)

To show this, �rst note that

λ1 =
2

3
α1 +

1

3
α2, λ2 =

1

3
α1 +

2

3
α2. (4.2)

In fact, write λ1 = uα1 + vα2. Since α∨
i = 2αi/⟨αi, αi⟩ and ⟨α∨

i , λj⟩ = δij , we have

1 = ⟨α∨
1 , λ1⟩ =

2

⟨α1, α1⟩
(u⟨α1, α1⟩+ v⟨α1, α2⟩) = 2u− v,

and 0 = ⟨α∨
2 , λ1⟩ = −u+2v, from which we obtain u = 2

3 , v = 1
3 , so λ1 = 2

3α1+
1
3α2.

The case of λ2 is similar.
Let λ = m1λ1+m2λ2 ∈ Q++ ρ, m1,m2 ∈ N. Then λ− ρ = n1λ1+n2λ2 ∈ Q+,

where nj = mj − 1, j = 1, 2. From (4.2) we have

n1λ1 + n2λ2 =
2n1 + n2

3
α1 +

n1 + 2n2
3

α2.

Since this belongs to Q, we have 2n1+n2

3 ∈ Z and n1+2n2

3 ∈ Z, which are equivalent
to n1 ≡ n2 (mod 3). This implies (4.1).

The simply-connected group G̃ in the A2 case is SU(3). Let Z̃ be the center
of G̃. The group corresponding to Q is G̃/Z̃, which is the projective unitary group
PU(3). The zeta-function corresponding to P is

ζ2((s1, s2, s3),y;SU(3)) = ζ2((s1, s2, s3),y;P ;A2)

=
∞∑

m,n=1

e2πi⟨y,mλ1+nλ2⟩

ms1ns2(m+ n)s3
, (4.3)

which, when y = 0, is the classical Mordell-Tornheim double sum. In the case
y = λ∨1 = 2

3α
∨
1 + 1

3α
∨
2 , we have

ζ2((s1, s2, s3), λ
∨
1 ;SU(3)) =

∞∑
m,n=1

ϱ2m+n

ms1ns2(m+ n)s3
, (4.4)
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where ϱ = e2πi/3 is the cube root of unity. The zeta-function corresponding to Q
is, by (3.1) and (4.1),

ζ2((s1, s2, s3),y;PU(3)) = ζ2((s1, s2, s3),y;Q;A2)

=
∑

λ∈Q++ρ

e2πi⟨y,λ⟩

⟨α∨
1 , λ⟩s1⟨α∨

2 , λ⟩s2⟨α∨
1 + α∨

2 , λ⟩s3

=
∞∑

m,n=1
m≡n (mod 3)

e2πi⟨y,mλ1+nλ2⟩

ms1ns2(m+ n)s3
. (4.5)

This can be regarded as a kind of �partial zeta-function� of A2 type, the double
analogue of the partial (Riemann) zeta-function.

For y = y1α
∨
1 +y2α

∨
2 , we can compute P(k,y;A2) from their generating function

F (t,y;A2), whose explicit form is given as [16, (9.12)]. For example, the result for
P((2, 2, 2),y;A2) is explicitly written as [16, (9.13)], from which and (2.19), when
y = 0, it follows that

P((2, 2, 2),0;Q;A2) =
187

2755620
.

Therefore, we obtain from Theorem 3.2 that

ζ2((2, 2, 2);PU(3)) =

∞∑
m,n=1

m≡n (mod 3)

1

m2n2(m+ n)2
=

187

688905
π6. (4.6)

Similarly, we can compute

ζ2((4, 4, 4);PU(3)) =
3279473

48475988686125
π12, (4.7)

ζ2((6, 6, 6);PU(3)) =
53109402098

3020275543157103456225
π18, (4.8)

ζ2((8, 8, 8);PU(3)) =
178778564412743

39097800024794787744890296875
π24. (4.9)

Also, in the case y = λ∨1 = 2
3α

∨
1 + 1

3α
∨
2 (see (4.4)), that is, (y1, y2) =

(
2
3 ,

1
3

)
, we can

similarly obtain

ζ2((2, 2, 2), λ
∨
1 ;SU(3)) =

53

229635
π6, (4.10)

ζ2((4, 4, 4), λ
∨
1 ;SU(3)) =

1078771

16158662895375
π12, (4.11)

ζ2((6, 6, 6), λ
∨
1 ;SU(3)) =

88392335894

5033792571928505760375
π18, (4.12)

ζ2((8, 8, 8), λ
∨
1 ;SU(3)) =

1012923518531597

221554200140503797221045015625
π24. (4.13)
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Note that from the de�nition, we can con�rm

ζ2((2p, 2p, 2p), λ
∨
1 ;SU(3)) = ζ2((2p, 2p, 2p), λ

∨
2 ;SU(3)), p ∈ N,

ζ2((2p, 2p, 2p), λ
∨
1 ;PU(3)) = ζ2((2p, 2p, 2p), λ

∨
2 ;PU(3))

= ζ2((2p, 2p, 2p),0;PU(3)), p ∈ N.

In the next section, we will prove certain functional relations for ζ2(s,0; PU(3))
including (4.6)�(4.9).

Remark 4. In [24, Section 5], Subbarao and Sitaramachandrarao proposed a prob-
lem of evaluating the double series

∞∑
m,n=1

(−1)m−1

mknk(m+ n)k
,

∞∑
m,n=1

(−1)m+n

mknk(m+ n)k
, k ∈ N.

As for the case of odd k, the third-named author evaluated each series in terms of
values of ζ(s) (see [28, 29]). The case of even k is still open. It follows from (4.4)
that the above formulas (4.10)�(4.13) imply certain answers to a problem analogous
to that of Subbarao and Sitaramachandrarao.

Example 4.2. We consider the A3 type. Let ∆=∆(A3) with Ψ = {α1, α2, α3},
∆+ = {α1, α2, α3, α1+α2, α2+α3, α1+α2+α3}, P =

∑3
j=1 Zλj and Q =

∑3
j=1 Zαj .

Analogously to (4.2), we have

λ1=
3

4
α1+

1

2
α2+

1

4
α3, λ2=

1

2
α1+α2+

1

2
α3, λ3=

1

4
α1+

1

2
α2+

3

4
α3. (4.14)

It is known that P/Q ≃ Z/4Z (see [3]). Therefore, there is a unique intermediate
lattice L1 with P ) L1 ) Q, satisfying (L1 : Q) = 2. The group corresponding
to P (respectively Q) is SU(4) (respectively PU(4)). The group G = G(L1) is
SU(4)/{±1}, which is known to be isomorphic to SO(6).

We know (see [17]) that

ζ3(s,y;SU(4)) = ζ3(s,y;P ;A3)

=

∞∑
m1,m2,m3=1

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1+m2)s4(m2+m3)s5(m1+m2+m3)s6

. (4.15)

Note that ζ3(s,0;SU(4)) = ζ3(s;A3) (see [22]). Similarly to the A2 case (see Exam-
ple 4.1), from the generating function which was already given in [15, Example 2], we
can compute P((2, 2, 2, 2, 2, 2),y;A3), though it is too long to write it here. Hence,
we can obtain by (2.19) that

P((2, 2, 2, 2, 2, 2), λ∨1 ;P ;A3) = − 19329337

14283291230208000
,

where λ∨1 = 3
4α

∨
1 + 1

2α
∨
2 + 1

4α
∨
3 . Therefore, we obtain from Theorem 3.2 that

ζ3((2, 2, 2, 2, 2, 2), λ
∨
1 ;SU(4)) = ζ3((2, 2, 2, 2, 2, 2), λ

∨
1 ;P ;A3)
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=
∞∑

m1,m2,m3=1

i3l+2m+n

m2
1m

2
2m

2
3(m1 +m2)2(m2 +m3)2(m1 +m2 +m3)2

= − 19329337

2678117105664000
π12. (4.16)

Concerning L1 and Q, similarly to (4.1), we can show

(L1)++ρ=

{ 3∑
j=1

mjλj
∣∣ (mj) ∈N3,m1≡m3 (mod 2)

}
, (4.17)

Q++ρ=

{ 3∑
j=1

mjλj
∣∣ (mj) ∈N3,m1+2m2+3m3≡2(mod 4)

}
. (4.18)

In fact, letting λ =
∑3
j=1mjλj ∈ Q++ρ,mj ∈ N, we have λ−ρ =

∑3
j=1 njλj ∈ Q+,

where nj = mj − 1, 1 6 j 6 3. From (4.14), we have

3∑
j=1

njλj =
3n1 + 2n2 + n3

4
α1 +

n1 + 2n2 + n3
2

α2 +
n1 + 2n2 + 3n3

4
α3,

which belongs to Q. Therefore,

(i) 3n1 + 2n2 + n3 ≡ 0 (mod 4),

(ii) n1 + 2n2 + n3 ≡ 0 (mod 2),

(iii) n1 + 2n2 + 3n3 ≡ 0 (mod 4).

We see that (iii) implies

(iv) n1 ≡ n3 (mod 2),

which automatically implies (ii). Moreover, we �nd that (iii) and (iv) imply (i).
Therefore, the only essential condition is (iii), which is equivalent to the congruence
condition in (4.18).

Next, de�ne the homomorphism η : P ∼= Z3 → Z/4Z by

η(n1, n2, n3) = n1 + 2n2 + 3n3 (mod 4).

Then from the above argument we �nd that Q = Ker η. Let L∗
1 be the set of

all (n1, n2, n3) satisfying n1 ≡ n3 (mod 2). Then {0} ( η(L∗
1) ( Z/4Z, hence

Q ( L∗
1 ( P . Therefore L∗

1 should be equal to L1, which implies (4.17).
Let y = y1α

∨
1 + y2α

∨
2 + y3α

∨
3 . From (4.17) and (4.18), we obtain

ζ3(s,y;SO(6)) = ζ3(s,y;L1;A3)

=
∞∑

m1,m2,m3=1

m1≡m3(mod2)

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1+m2)s4(m2+m3)s5(m1+m2+m3)s6

, (4.19)

ζ3(s,y;PU(4)) = ζ3(s,y;Q;A3)
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=
∞∑

m1,m2,m3=1

m1+2m2+3m3≡2(mod4)

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1+m2)s4(m2+m3)s5(m1+m2+m3)s6

.(4.20)

Example 4.3. We consider the case of Br and of Cr types. The simply-connected
group G̃ in the Br case is the spinor group Spin(2r + 1), and G̃/Z̃ = SO(2r + 1),
where Z̃ is the center of G̃. In the Cr case G̃ = Sp(r), and G̃/Z̃ is the projective
symplectic group PSp(r). The explicit forms of zeta-functions for r = 2, 3 are

ζ2(s,y;Spin(5)) = ζ2(s,y;P ;B2)

=
∞∑

m1,m2=1

e2πi⟨y,m1λ1+m2λ2⟩

ms1
1 m

s2
2 (m1 +m2)s3(2m1 +m2)s4

,

ζ2(s,y;Sp(2)) = ζ2(s,y;P ;C2)

=
∞∑

m1,m2=1

e2πi⟨y,mλ1+nλ2⟩

ms1
1 m

s2
2 (m1 +m2)s3(m1 + 2m2)s4

,

ζ3(s,y;Spin(7)) = ζ3(s,y;P ;B3)

=
∞∑

m1,m2,m3=1

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1 +m2)s4(m2 +m3)s5(2m2 +m3)s6

× 1

(m1 +m2 +m3)s7(m1 + 2m2 +m3)s8(2m1 + 2m2 +m3)s9
,

ζ3(s,y;Sp(3)) = ζ3(s,y;P ;C3)

=

∞∑
m1,m2,m3=1

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1 +m2)s4(m2 +m3)s5(m2 + 2m3)s6

× 1

(m1 +m2 +m3)s7(m1 +m2 + 2m3)s8(m1 + 2m2 + 2m3)s9

(see [14, Sections 8 and 9], [17, Section 6], where only the formulas in the special
case when y = 0 are stated). We know that (P : Q) = 2 in the case of Br and of
Cr types (see [3]). Therefore, the lattice L with P ⊃ L ⊃ Q coincides with P or Q.
We show

Q+(B2) + ρ =


2∑
j=1

mjλj

∣∣∣∣ (mj) ∈ N2, m2 ≡ 1 (mod 2)

 ,

Q+(C2) + ρ =


2∑
j=1

mjλj

∣∣∣∣ (mj) ∈ N2, m1 ≡ 1 (mod 2)

 ,

Q+(B3) + ρ =


3∑
j=1

mjλj

∣∣∣∣ (mj) ∈ N3, m3 ≡ 1 (mod 2)

 ,



164 Y. Komori, K. Matsumoto, H. Tsumura

Q+(C3) + ρ =


3∑
j=1

mjλj

∣∣∣∣ (mj) ∈ N3, m1 ≡ m3 (mod 2)

 .

In fact, we consider, for example, the case of B3. Analogously to Examples 4.1 and
4.2, we have

λ1 = α1+α2+α3, λ2 = α1+2α2+2α3, λ3 =
1

2
α1+α2+

3

2
α3. (4.21)

Let λ =
∑3
j=1mjλj ∈ Q+ + ρ, mj ∈ N. Then λ − ρ =

∑3
j=1 njλj ∈ Q+, where

nj = mj − 1, 1 6 j 6 3. It follows from (4.21) that

λ− ρ =
2n1 + 2n2 + n3

2
α1 + (n1 + 2n2 + n3)α2 +

2n1 + 4n2 + 3n3
2

α3,

which belongs to Q. Therefore, n3 ≡ 0 (mod 2), that is, m3 ≡ 1 (mod 2). The cases
of B2, C2 and C3 can be similarly treated.

Therefore, we obtain

ζ2(s,y;SO(5)) = ζ2(s,y;Q;B2)

=
∞∑

m1,m2=1

m2≡1 (mod 2)

e2πi⟨y,m1λ1+m2λ2⟩

ms1
1 m

s2
2 (m1 +m2)s3(2m1 +m2)s4

, (4.22)

ζ2(s,y;PSp(2)) = ζ2(s,y;Q;C2)

=
∞∑

m1,m2=1

m1≡1 (mod 2)

e2πi⟨y,m1λ1+m2λ2⟩

ms1
1 m

s2
2 (m1 +m2)s3(m1 + 2m2)s4

, (4.23)

ζ3(s,y;SO(7)) = ζ3(s,y;Q;B3)

=

∞∑
m1,m2,m3=1

m3≡1 (mod 2)

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1 +m2)s4(m2 +m3)s5(2m2 +m3)s6

× 1

(m1 +m2 +m3)s7(m1 + 2m2 +m3)s8(2m1 + 2m2 +m3)s9
, (4.24)

ζ3(s,y;PSp(3)) = ζ3(s,y;Q;C3)

=
∞∑

m1,m2,m3=1

m1≡m3 (mod 2)

e2πi⟨y,m1λ1+m2λ2+m3λ3⟩

ms1
1 m

s2
2 m

s3
3 (m1 +m2)s4(m2 +m3)s5(m2 + 2m3)s6

× 1

(m1 +m2 +m3)s7(m1 +m2 + 2m3)s8(m1 + 2m2 + 2m3)s9
. (4.25)

Now we evaluate special values. Consider the case G = PSp(2). Theorem 3.2 of C2

type with ν = y = 0 gives that

ζ2((2k, 2l, 2l, 2k);PSp(2)) ∈ Q · π4(k+l) (4.26)
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for k, l ∈ N. Actually we have already given the generating function of C2 type (see
[15, Examples 1]) and also the generalized Bernoulli function P((2, 2, 2, 2),y;C2)
(see [15, Examples 3]). Similarly we can give explicit forms of P((2k, 2l, 2l, 2k),y;C2),
k, l ∈ N, though it is too complicated to describe them here. Using these results,
we can obtain the following explicit formulas:

ζ2((2, 2, 2, 2);PSp(2)) =
π8

322560
,

ζ2((2, 4, 4, 2);PSp(2)) =
29

3832012800
π12,

ζ2((4, 2, 2, 4);PSp(2)) =
13

3832012800
π12,

ζ2((4, 4, 4, 4);PSp(2)) =
479

55794106368000
π16.

We will give another type of evaluation formulas in the following sections (see Ex-
amples 5.7 and 6.5).

Remark 5. From (1.4) and (1.7) we see that the original volume formula of Witten
is restricted to the case s = 2(kα)α∈∆+ , where all the kαs are the same. Our Theo-
rem 3.2 covers a wider class of special values, such as the (2, 4, 4, 2) and (4, 2, 2, 4)
cases in the above.

5. Functional relations and various evaluation formulas

In the preceding section, we gave explicit forms of several zeta-functions of Lie
groups, and especially gave some evaluation formulas in the cases of A2, C2 and
A3 types at even integer points, by computing generating functions of their values.
However, it seems a di�cult problem to evaluate zeta-functions of Lie groups at
arbitrary positive integer points by that method. In this section, we give various
evaluation formulas for zeta values in the cases ofA2 and C2(≃ B2) types, by proving
certain functional relations among them which are analogues of our previous results
given in [12, 14, 15, 22, 33]. The advantage of the method in this section is that it
may treat the special values at s = l = (lα)α∈∆+ , lα ∈ N and some of them are odd.

First we consider ζ2(s;PU(3)) = ζ2(s,0;Q;A2) and prove the following theorem,
where ϕ(s, α) is the Lerch zeta-function de�ned by (2.13).

Theorem 5.1. For p, q ∈ N,

3

{
ζ2((p, q, s);PU(3)) + (−1)pζ2((p, s, q);PU(3))

+(−1)qζ2((q, s, p);PU(3))

}
= −

p∑
τ=0

(
p+ q − τ − 1

q − 1

)
(−1)τ

(2πi)τ

τ !
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×
2∑
a=0

Bτ

(a
3

)
ϕ

(
s+ p+ q − τ,−a

3

)
−

q∑
τ=0

(
p+ q − τ − 1

p− 1

)
(2πi)τ

τ !

×
2∑
a=0

Bτ

(a
3

)
ϕ

(
s+ p+ q − τ,

a

3

)
(5.1)

holds for s ∈ C except for singularities of functions on the both sides.

Example 5.2. It should be emphasized that Theorem 5.1 gives evaluation formulas
for ζ2((a, b, c);PU(3)) when a+b+c is odd. For example, putting (p, q, s) = (1, 1, 1)
in (5.1), we have

3ζ2((1, 1, 1);PU(3)) =
1∑

τ=0

(−1)τ
(2πi)τ

τ !

2∑
a=0

Bτ

(a
3

) ∞∑
m=1

ϱ−ma

m3−τ

+
1∑

τ=0

(2πi)τ

τ !

2∑
a=0

Bτ

(a
3

) ∞∑
m=1

ϱma

m3−τ . (5.2)

We can easily check that

2∑
a=0

ϱlaB1

(a
3

)
=


−1

2 if l ≡ 0 (mod 3),

−1
2 − 1

2
√
3
i if l ≡ 1 (mod 3),

−1
2 + 1

2
√
3
i if l ≡ 2 (mod 3).

(5.3)

Then (5.2) can be rewritten to

ζ2((1, 1, 1);PU(3)) =
2

27
ζ(3) +

2π

3
√
3
L(2, χ3), (5.4)

where we denote by χ3 the primitive Dirichlet character of conductor 3. This is
an analogue of ζ2((1, 1, 1);SU(3)) = 2ζ(3) (see [27]). Similarly, setting (p, q, s) =
(1, 2, 2) in (5.1), and using the relations (5.3) and

2∑
a=0

ϱlaB2

(a
3

)
=

{
1
18 if l ≡ 0 (mod 3),
2
9 if l ≡ 1, 2 (mod 3),

(5.5)

we can obtain

ζ2((2, 2, 1);PU(3)) = − 1

81
ζ(5) +

35π2

243
ζ(3)− 2π

3
√
3
L(4, χ3). (5.6)

The above formulas (5.4) and (5.6) can also be deduced by using

ϕ

(
s,

1

3

)
− ϕ

(
s,

2

3

)
= 2i

∞∑
m=1

sin(2πm/3)

ms
=

√
3iL(s, χ3) (5.7)
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instead of (5.3), (5.5). A more general result will be given in the next section (see
Theorem 6.1).

By the partial fraction decomposition, we have

ζ2((1, 1, 1);PU(3)) =
∞∑

m,n=1
m≡n (mod 3)

1

mn(m+ n)
= 2

∞∑
m,n=1

m≡n (mod 3)

1

m(m+ n)2
.

Hence, combining with (5.4) we obtain

∞∑
m,n=1

m≡n (mod 3)

1

m(m+ n)2
=

1

27
ζ(3) +

π

3
√
3
L(2, χ3). (5.8)

This can be regarded as a formula for a partial sum of the double zeta value,
analogously to the well-known result given by Euler (cf. [9]):

∞∑
m,n=1

1

m(m+ n)2
= ζ(3).

Remark 6. Setting (p, q, s) = (2k, 2k, 2k) in Theorem 5.1 and using the fact

Bj(x) = − j!

(2πi)j
lim
M→∞

M∑
m=−M
m ̸=0

e2πimx

mj
, j ∈ N, 0 6 x < 1, (5.9)

(see [1, p. 266]), we obtain

ζ2((2k, 2k, 2k);PU(3))

=
(2πi)6k

9

2k∑
τ=0

(
4k − τ − 1

2k − 1

)

×
2∑
a=0

Bτ (a/3)

τ !

B6k−τ (a/3)

(6k − τ)!
, k ∈ N, (5.10)

which is an explicit form of (3.2) for PU(3) and includes (4.6)�(4.9).

Now we give the proof of Theorem 5.1. We �rst prepare the following lemma
which can be proved by the same method as introduced in [14]. In fact, this lemma
in the case when p and q are even has already been proved in [14, (7.55)]. We use
the notation ϕ(s) := ϕ

(
s, 12
)
= (21−s − 1)ζ(s) and εm := 1+(−1)m

2 for m ∈ Z.

Lemma 5.3. For p ∈ N, s ∈ R with s > 1 and x ∈ C with |x| 6 1,∑
l̸=0,m>1
l+m ̸=0

(−1)l+mxmei(l+m)θ

lpms(l +m)q
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−2

p∑
j=0

ϕ(p− j)εp−j

j∑
ξ=0

(
q − 1 + j − ξ

q − 1

)
×(−1)j−ξ

∞∑
m=1

(−1)mxmeimθ

ms+q+j−ξ
(iθ)ξ

ξ!

+2

q∑
j=0

ϕ(q − j)εq−j

j∑
ξ=0

(
p− 1 + j − ξ

p− 1

)
×(−1)p−1

∞∑
m=1

xm

ms+p+j−ξ
(iθ)ξ

ξ!
= 0 (5.11)

holds for θ ∈ [−π, π].

Proof. For p ∈ N, it is known that (see, for example, [14, (4.31), (4.32)])

lim
L→∞

∑
−L6l6L

l̸=0

(−1)leilθ

lp
= 2

p∑
j=0

ϕ(p− j)εp−j
(iθ)j

j!
, θ ∈ (−π, π). (5.12)

Note that the left-hand side is uniformly convergent for θ ∈ (−π, π) (see [36, §
3.35]), and is also absolutely convergent for θ ∈ [−π, π] when p > 2. First we
assume p > 2. Then, for θ ∈ [−π, π], it follows from (5.12) that∑

l∈Z
l ̸=0

(−1)leilθ

lp
− 2

p∑
j=0

ϕ(p− j)εp−j
(iθ)j

j

 ∞∑
m=1

(−1)mxmeimθ

ms
= 0, (5.13)

where the left-hand side is absolutely and uniformly convergent for θ ∈ [−π, π].
Therefore, we have∑

l∈Z,l̸=0
m>1

l+m ̸=0

(−1)l+mxmei(l+m)θ

lpms

−2

p∑
j=0

ϕ(p− j)εp−j

{ ∞∑
m=1

(−1)mxmeimθ

ms

}
(iθ)j

j!

= (−1)p+1
∞∑
m=1

xm

ms+p
(5.14)

for θ ∈ [−π, π]. Now we apply [14, Lemma 6.2] with d = q ∈ N. Then we obtain
(5.11) for p > 2.

Next we prove the case p = 1. As we proved above, (5.11) in the case p = 2
holds. Replacing x by −xeiθ in this case, we have∑

l ̸=0,m>1
l+m ̸=0

(−1)lxmeilθ

l2ms(l +m)q
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−2

2∑
j=0

ϕ(2− j)ε2−j

j∑
ξ=0

(
q − 1 + j − ξ

q − 1

)
×(−1)j−ξ

∞∑
m=1

xm

ms+q+j−ξ
(iθ)ξ

ξ!

+2

q∑
j=0

ϕ(q − j)εq−j

j∑
ξ=0

(
1 + j − ξ

1

)
×(−1)1

∞∑
m=1

(−1)mxme−imθ

ms+2+j−ξ
(iθ)ξ

ξ!
= 0 (5.15)

for θ ∈ [−π, π]. We denote the �rst, the second and the third term on the left hand
side of (5.15) by I1(θ), I2(θ) and I3(θ), respectively. We di�erentiate these terms
in θ. We can easily compute I ′1(θ) and I

′
2(θ). As for I

′
3(θ), we have

I ′3(θ) = 2

q∑
j=0

ϕ(q − j)εq−j

{
− i

j∑
ξ=0

(1 + j − ξ)(−1)
∞∑
m=1

(−1)mxme−imθ

ms+1+j−ξ
(iθ)ξ

ξ!

+ i

j∑
ξ=1

(1 + j − ξ)(−1)

∞∑
m=1

(−1)mxme−imθ

ms+2+j−ξ
(iθ)ξ−1

(ξ − 1)!

}
.

Note that as for the second member in the curly brackets on the right-hand side, ξ
may also run from 1 to j + 1 because 1 + j − (j + 1) = 0 in the summand. Hence,
by replacing ξ − 1 by ξ, we have

I ′3(θ) = 2i

q∑
j=0

ϕ(q − j)εq−j

j∑
ξ=0

∞∑
m=1

(−1)mxme−imθ

ms+1+j−ξ
(iθ)ξ

ξ!
.

Thus, we see that I′1(θ)+I
′
2(θ)+I

′
3(θ)

i , replacing x by −xeiθ, gives (5.11) in the case
p = 1. This completes the proof of Lemma 5.4.

Here we quote the following lemma given in [15, Lemma 9.1]. Note that the
assertion in [15, Lemma 9.1] is stated only in the case that p is even. However, we
can easily check that the assertion holds for any p ∈ N as follows.

Lemma 5.4. Let t ∈ [0, 2π) ⊂ R, and h : N0 → C be a function (which may depend
on t). Then, for p ∈ N,

p∑
j=0

ϕ(p− j)εp−j

j∑
ξ=0

h(j − ξ)
(i(t− π))ξ

ξ!

= −1

2

p∑
ξ=0

h(p− ξ)
(2πi)ξ

ξ!
Bξ

({
t

2π

})
. (5.16)
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Put θ = t − π, 0 6 t < 2π, in (5.11) and multiply by (−1)p the both sides.
Then, using Lemma 5.4, we have the following. Note that this can also be derived
by a certain transformation of a result of Nakamura [23, Theorem 3.1] when |x| = 1.

Lemma 5.5. For p, q ∈ N, s, t ∈ R with s > 1 and t ∈ [0, 2π), and x ∈ C with
|x| 6 1,

∞∑
l,m=1

xl+meimt

lpmq(l +m)s
+(−1)p

∞∑
l,m=1

xmei(l+m)t

lpms(l +m)q
+(−1)q

∞∑
l,m=1

xme−ilt

lqms(l +m)p

= −
p∑
τ=0

(
p+ q − τ − 1

q − 1

)
(−1)τ

∞∑
m=1

xmeimt

ms+p+q−τ
(2πi)τ

τ !
Bτ

({
t

2π

})
−

q∑
τ=0

(
p+ q − τ − 1

p− 1

) ∞∑
m=1

xm

ms+p+q−τ
(2πi)τ

τ !
Bτ

({
t

2π

})
. (5.17)

Using these results, we give the proof of Theorem 5.1 as follows.
Proof of Theorem 5.1. Let x = e−2it and further let t = 2π a3 , a = 0, 1, 2, on

the both sides of (5.17). Then, summing up with a = 0, 1, 2 and using the fact for
ϱ = e2πi/3 that

2∑
a=0

ϱNa =

{
3 if N ≡ 0 (mod 3),

0 if N ̸≡ 0 (mod 3),

we have

3


∑

l,m>1
l≡m (mod 3)

1

lpmq(l +m)s
+ (−1)p

∑
l,m>1

l≡m (mod 3)

1

lpms(l +m)q

+(−1)q
∑

l,m>1
l≡m (mod 3)

1

lqms(l +m)p


= −

p∑
τ=0

(
p+ q − τ − 1

q − 1

)
(−1)τ

2∑
a=0

∞∑
m=1

ϱ−ma

ms+p+q−τ
(2πi)τ

τ !
Bτ

({a
3

})
−

q∑
τ=0

(
p+ q − τ − 1

p− 1

) 2∑
a=0

∞∑
m=1

ϱma

ms+p+q−τ
(2πi)τ

τ !
Bτ

({a
3

})
.

Noting (4.5) and using Proposition 2.1, we complete the proof of Theorem 5.1.
Secondly, we consider the case of C2 type, namely the zeta-function

ζ2(s;PSp(2)) = ζ2(s,0;Q;C2) de�ned by (4.23) with y = 0. We already stud-
ied the zeta-function of C2 type in [14, Section 8] and [15, Section 9]. In fact, using
the same method as in the proof of [15, (9.8)], we can obtain∑

l>1
m>1

eilt

lpms(l +m)q(l + 2m)r
+
∑
l>1
m>1
l ̸=m
l̸=2m

e−ilt

(−l)pms(−l +m)q(−l + 2m)r
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+

p∑
ξ=0

p−ξ∑
ω=0

(
ω + r − 1

ω

)(
p+ q − 1− ξ − ω

q − 1

)
(−1)p−ξ

2r+ω
(2πi)ξ

ξ!

×ζ(s+ p+ q + r − ξ)Bξ (t/2π)

+

q∑
ξ=0

q−ξ∑
ω=0

(
ω + r − 1

ω

)(
p+ q − 1− ξ − ω

p− 1

)
(−1)p−ω

(2πi)ξ

ξ!

×ϕ(s+ p+ q + r − ξ,−t/2π)Bξ (t/2π)

+
r∑
ξ=0

p−1∑
ω=0

(
ω + r − ξ

ω

)(
p+ q − 2− ω

q − 1

)
(−1)p

2r−ξ+ω+1

(2πi)ξ

ξ!

×ϕ(s+ p+ q + r − ξ,−t/π)Bξ (t/2π)

+

r∑
ξ=0

q−1∑
ω=0

(
ω + r − ξ

ω

)(
p+ q − 2− ω

p− 1

)
(−1)p−ω+1 (2πi)

ξ

ξ!

×ϕ(s+ p+ q + r − ξ,−t/π)Bξ (t/2π) = 0 (5.18)

for p, q, r ∈ N and s, t ∈ R with s > 1 and t ∈ [0, 2π). Actually, this equation with
replacing (p, q, r) by (2p, 2q, 2p) coincides with [15, (9.8)] in the case (η, ρ, δ, τ) =
(t, 0, 0, 0). Denote the second sum on the left-hand side of (5.18) by Σ2. We split Σ2

into two parts according to the conditions l < m or l > m, and transform variables
as j = m− l(> 1) when l < m, and j = l −m(> 1) when l > m. In the latter case
we further split the sum according to j < m or j > m (that is, l < 2m or l > 2m).
Then we obtain

Σ2 = (−1)p
∑
l>1
m>1

e−ilt

lpmq(l +m)s(l + 2m)r

+(−1)p+q
∑
l>1
m>1

e−i(l+2m)t

lrmq(l +m)s(l + 2m)p

+(−1)p+q+r
∑
l>1
m>1

e−i(l+2m)t

lrms(l +m)q(l + 2m)p
. (5.19)

Replacing Σ2 by (5.19) on the left-hand side of (5.18), and denote the resulting
left-hand side by H(t). Then (5.18) implies H(t) = 0 for any t ∈ [0, 2π). Let
t = 0, π. We note that e±ilπ = e−i(l+2m)π = (−1)l for l,m ∈ N. Also we have
ϕ(s, 0) = ϕ(s,−1) = ζ(s), ϕ

(
s,− 1

2

)
= ϕ(s) = (21−s−1)ζ(s). Therefore, considering

H(0)−H(π)
2 = 0 and noting (4.23), similarly to Theorem 5.1, we have the following

result.

Theorem 5.6. For p, q, r ∈ N,

ζ2((p, s, q, r);PSp(2)) + (−1)pζ2((p, q, s, r);PSp(2))
+(−1)p+qζ2((r, q, s, p);PSp(2)) + (−1)p+q+rζ2((r, s, q, p);PSp(2))

+

p∑
ξ=0

p−ξ∑
ω=0

(
ω + r − 1

ω

)(
p+ q − 1− ξ − ω

q − 1

)
(−1)p−ξ

2r+ω
(2πi)ξ

ξ!
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×ζ(s+ p+ q + r − ξ)
Bξ(0)−Bξ (1/2)

2

+

q∑
ξ=0

q−ξ∑
ω=0

(
ω + r − 1

ω

)(
p+ q − 1− ξ − ω

p− 1

)
(−1)p−ω

(2πi)ξ

ξ!

×ζ(s+ p+ q + r − ξ)
Bξ(0)−

(
21−s−p−q−r+ξ − 1

)
Bξ (1/2)

2

+
r∑
ξ=0

p−1∑
ω=0

(
ω + r − ξ

ω

)(
p+ q − 2− ω

q − 1

)
(−1)p

2r−ξ+ω+1

(2πi)ξ

ξ!

×ζ(s+ p+ q + r − ξ)
Bξ(0)−Bξ (1/2)

2

+
r∑
ξ=0

q−1∑
ω=0

(
ω + r − ξ

ω

)(
p+ q − 2− ω

p− 1

)
(−1)p−ω+1 (2πi)

ξ

ξ!

×ζ(s+ p+ q + r − ξ)
Bξ(0)−Bξ (1/2)

2
= 0 (5.20)

holds for s ∈ C except for singularities.

Example 5.7. By Theorem 5.6, we can evaluate ζ2((a, b, c, d);PSp(2)) in some case
when a+ b+ c+d is odd. For example, setting (p, s, q, r) = (2, 1, 1, 1) and (2, 3, 3, 5)
in (5.20), we have

ζ2((2, 1, 1, 1);PSp(2)) =
3

8
ζ(2)ζ(3)− 31

64
ζ(5),

ζ2((2, 3, 3, 5);PSp(2)) = −15

16
ζ(4)ζ(9)− 17379

4096
ζ(2)ζ(11) +

8191

1024
ζ(13).

In general, it seems to be di�cult to evaluate ζ2((a, b, c, d);PSp(2)) for arbitrary
a, b, c, d ∈ N. We will further consider this problem in the next section.
Remark 7. Putting (p, s, q, r) = (2k, 2l, 2l, 2k), k, l ∈ N, in (5.20), we can see that

ζ2((2k, 2l, 2l, 2k);PSp(2))

can be expressed as a polynomial in ζ(4k + 4l − ξ)(iπ)ξ with Q-coe�cients. Since
ζ2((2k, 2l, 2l, 2k);PSp(2)) ∈ R, we see that the part consisting of the terms of
ζ(4k + 4l − ξ)(iπ)ξ for odd ξ vanish. On the other hand, for even ξ, each term
belongs to Q · π4(k+l). Thus, we recover (4.26).

6. Parity results

In general, a parity result means a property that some multiple zeta value whose
weight and depth are of di�erent parity can be written in terms of multiple zeta
values of lower depth. The �rst parity result is Euler's discovery that the double
zeta value (of weight p+ q)

ζ2(p, q) =
∑
m>1
n>1

1

mp(m+ n)q
, p, q ∈ N, q > 2,
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can be expressed as a polynomial in {ζ(j+1) | j ∈ N} with Q-coe�cients (cf. [9]) if
its weight p+ q is odd. This result has been generalized to the case of more general
multiple zeta-values (see [8, 31]).

It is an interesting problem to ask what kind of multiple zeta values has this type
of properties. Tornheim (see [27, Theorem 7]) proved that ζ2((a, b, c),0;SU(3)) =
ζ2((a, b, c),0;P,A2) can be expressed as a polynomial in {ζ(j + 1) | j ∈ N} with
Q-coe�cients if its weight a + b + c is odd. This result has been generalized by
the third-named author [32] to the case of multiple Mordell-Tornheim zeta val-
ues. Also, the third-named author (see [30]) proved that ζ2((a, b, c, d),0;Sp(2)) =
ζ2((b, a, c, d),0;Spin(5)) has this property, which is an extension of the result of
Apostol and Vu [2].

In this section, we �rst prove the following fact, which is a PU(3) type analogue
of Tornheim's result stated above.

Theorem 6.1. Let a, b, c ∈ N. If a + b + c is odd then ζ2((a, b, c);PU(3)) can be
expressed as a polynomial in {ϕ

(
j; a3

)
| a ∈ {0, 1, 2}, j ∈ N} with Q[π, i]-coe�cients.

Proof. Denote by X the set of polynomials in {ϕ
(
j; a3

)
| a ∈ {0, 1, 2}, j ∈

N} with Q[π, i]-coe�cients. Then we see that the right-hand side of (5.1) with
(p, q, s) = (c, a, b) is in X. First we consider the case a is odd and b, c is even, hence
a+ b+ c is odd. Then, by (5.1), we have

ζ2((c, a, b);PU(3)) + ζ2((c, b, a);PU(3))− ζ2((a, b, c);PU(3)) ∈ X.

Also, setting (p, q, s) = (c, b, a) in (5.1), we have

ζ2((c, a, b);PU(3)) + ζ2((c, b, a);PU(3)) + ζ2((b, a, c);PU(3)) ∈ X.

Note that ζ2((p, q, r);PU(3)) = ζ2((q, p, r);PU(3)). Hence, these imply the as-
sertion ζ2((a, b, c);PU(3)) ∈ X. As for other cases, we can similarly prove their
assertions. This completes the proof of the theorem.
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Example 6.2. Setting (p, q, s) = (1, 3, 5) and (1, 5, 3) in (5.1), we have

ζ2((1, 3, 5);PU(3))− ζ2((1, 5, 3);PU(3))− ζ2((3, 5, 1);PU(3))

= −4

3
ζ(9) +

π2

9
ζ(7)− 4

3

(
ϕ

(
9,

1

3

)
+ ϕ

(
9,

2

3

))
+

2πi

9

(
ϕ

(
8,

1

3

)
− ϕ

(
8,

2

3

))
− π2

27

(
ϕ

(
7,

1

3

)
+ ϕ

(
7,

2

3

))
+

4π3i

243

(
ϕ

(
6,

1

3

)
− ϕ

(
6,

2

3

))
,

ζ2((1, 5, 3);PU(3))− ζ2((1, 3, 5);PU(3))− ζ2((5, 3, 1);PU(3))

= −2ζ(9) +
π2

9
ζ(7) +

π4

135
ζ(5)− 2

(
ϕ

(
9,

1

3

)
+ ϕ

(
9,

2

3

))
+

2πi

9

(
ϕ

(
8,

1

3

)
− ϕ

(
8,

2

3

))
− π2

27

(
ϕ

(
7,

1

3

)
+ ϕ

(
7,

2

3

))
+

4π3i

243

(
ϕ

(
6,

1

3

)
− ϕ

(
6,

2

3

))
− 13π4

3645

(
ϕ

(
5,

1

3

)
+ ϕ

(
5,

2

3

))
+

4π5i

2187

(
ϕ

(
4,

1

3

)
− ϕ

(
4,

2

3

))
.

Combining these results and noting ζ2((3, 5, 1); PU(3)) = ζ2((5, 3, 1); PU(3)), we
have

ζ2((3, 5, 1);PU(3))

=
5

3
ζ(9)− π2

9
ζ(7)− π4

270
ζ(5)

+
5

3

(
ϕ

(
9,

1

3

)
+ ϕ

(
9,

2

3

))
− 2πi

9

(
ϕ

(
8,

1

3

)
− ϕ

(
8,

2

3

))
+
π2

27

(
ϕ

(
7,

1

3

)
+ ϕ

(
7,

2

3

))
− 4π3i

243

(
ϕ

(
6,

1

3

)
− ϕ

(
6,

2

3

))
+

13π4

7290

(
ϕ

(
5,

1

3

)
+ ϕ

(
5,

2

3

))
− 2π5i

2187

(
ϕ

(
4,

1

3

)
− ϕ

(
4,

2

3

))
.

Remark 8. Applying (5.7) and

ϕ

(
s,

1

3

)
+ ϕ

(
s,

2

3

)
= (31−s − 1)ζ(s) (6.1)

to the above expression, we �nd that ζ2((3, 5, 1);PU(3)) can actually be written
in terms of Riemann-zeta values and values of the Dirichlet L-function attached
to χ3. In general, since from (5.7) and (6.1) we see that ϕ

(
s, 13
)
and ϕ

(
s, 23
)
can

be written in terms of L(s, χ3) and ζ(s), Theorem 6.1 can be reinterpreted that
if a + b + c is odd then ζ2((a, b, c);PU(3)) can be expressed as a polynomial in
{ζ(j), L(j, χ3) | j ∈ N} with Q[π, i]-coe�cients. This agrees with the results stated
in Example 5.2.
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Next consider the C2 case. Since we have already known the parity result for
ζ2((a, b, c, d);Sp(2)) ([30]), it should be not surprising to know that the following
parity result for ζ2((a, b, c, d);PSp(2)) holds.

Theorem 6.3. Let a, b, c, d ∈ N. If a+ b+ c+ d is odd then ζ2((a, b, c, d); PSp(2))
can be expressed as a polynomial in {ζ(j + 1) | j ∈ N} with Q-coe�cients.

In this case, we cannot directly obtain the assertion from Theorem 5.6 unlike the
case of PU(3). In fact, even if we use (5.20), it seems unable to obtain an expression
of ζ2((1, 2, 2, 2);PSp(2)) because this value vanishes if we set (p, s, q, r) = (1, 2, 2, 2)
or (2, 2, 2, 1) in (5.20). Hence, we use another method as follows. First we quote
the following.

Lemma 6.4 ([34, Theorem 4.1]). Let

Tτ,µ(k, l, d) =
∑
l>0
m>0

1

(2l + τ)a(2m+ µ)b(2l + 2m+ τ + µ)c
(6.2)

for k, l, d ∈ N and τ, µ ∈ {1, 2}. Suppose k + l + d is odd. Then Tτ,µ(k, l, d) can be
expressed as a polynomial in {ζ(j + 1) | j ∈ N} with Q-coe�cients.

It should be noted that the assertion in [34, Theorem 4.1] includes a condition
d > 2. However, by examining its proof, we can remove this condition. More
precisely, we know that [34, Theorem 4.1] can be derived from [34, Theorem 3.4]
which includes a condition d > 2. We can easily check that [34, Theorem 3.4] holds
for d = 1 if we interpret the empty sum as 0 in its statement. Thus [34, Theorem
4.1] holds for d = 1 which implies the above lemma. By this lemma we can prove
Theorem 6.3 as follows.

Proof of Theorem 6.3. First we use the relation

(−1)c

Xc(X + Y )d
=

c∑
j=1

(
c+ d− j − 1

c− j

)
(−1)j

1

Y c+d−jXj

+

d∑
j=1

(
c+ d− j − 1

d− j

)
1

Y c+d−j(X + Y )j
(6.3)

for c, d ∈ N, which can be elementarily proved by induction on c + d by using the
partial fraction decomposition repeatedly. Therefore, setting (X,Y ) = (2l + 1 +
m,m) in (6.3), we see that

(−1)cζ2(a, b, c, d;PSp(2))

=
∑
l>0
m>1

1

(2l + 1)amb(2l + 1 +m)c(2l + 1 + 2m)d

=
c∑
j=1

(
c+ d− j − 1

c− j

)
(−1)j

∑
l>0
m>1

1

(2l + 1)amb+c+d−j(2l + 1 +m)j
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+
d∑
j=1

(
c+ d− j − 1

d− j

)∑
l>0
m>1

1

(2l + 1)amb+c+d−j(2l + 1 + 2m)j

=

c∑
j=1

(
c+ d− j − 1

c− j

)
×(−1)j {T1,1(a, b+ c+ d− j, j) + T1,2(a, b+ c+ d− j, j)}

+

d∑
j=1

(
c+ d− j − 1

d− j

)
2b+c+d−jT1,2(a, b+ c+ d− j, j). (6.4)

Hence, by Lemma 6.4, we obtain the assertion.

Example 6.5. As we noted above, it seems impossible to obtain an expression of
ζ2((1, 2, 2, 2);PSp(2)) in terms of ζ(s), from (5.20). Hence we use (6.4). Then we
have

ζ2((1, 2, 2, 2);PSp(2))

= −2T1,1(1, 5, 1) + 62T1,2(1, 5, 1) + T1,1(1, 4, 2) + 17T1,2(1, 4, 2). (6.5)

By the method used in [34, Section 4], we can obtain

T1,1(1, 5, 1) = −105

128
ζ(3)ζ(4)− 93

128
ζ(5)ζ(2) +

381

128
ζ(7),

T1,2(1, 5, 1) = − 7

128
ζ(3)ζ(4)− 31

128
ζ(5)ζ(2) +

127

256
ζ(7),

T1,1(1, 4, 2) =
105

128
ζ(3)ζ(4) +

279

128
ζ(5)ζ(2)− 1143

256
ζ(7),

T1,1(1, 4, 2) =
7

128
ζ(3)ζ(4) +

183

128
ζ(5)ζ(2)− 635

256
ζ(7).

Substituting these results into (6.5), we obtain

ζ2((1, 2, 2, 2);PSp(2)) =
827

64
ζ(5)ζ(2)− 1397

64
ζ(7).
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